Çöpler (Erzincan, İç-Doğu Anadolu) Porfiri-Epitermal Altın Yatağında Arjilik Alterasyona İlişkin Mineralojik Kanıtlar

Çöpler porfiri-epitermal altın yatağı, Tetis Alpin-Himalaya orojenik kuşağında açılmalı tektonizma sonucu gelişen orta Eosen yaşlı plütonik sokulumlarla ilişkili bir altın yatağıdır. Plütonik kayaçlar (granodiyorit porfir, diyorit porfir) Geç Paleozoyik-Mesozoyik yaşlı metapelit ve metakarbonat kayaçlar içerisine sokulum yaparak porfiri-epitermal bir Cu-Au yatağı oluşturmuş ve hidrotermal alterasyon zonlarının (potasik, fillik, propilitik, arjilik) gelişimine neden olmuştur. Bu çalışmada, önceki araştırmacılarca yerel ve sınırlı alanda geliştiği belirtilen süperjen alterasyonun aksine, geniş yayılım sunan arjilik alterasyon zonlarının mineralojik-petrografik özelliklerinin ortaya konulması amaçlanmıştır. Bu kapsamda, optik ve taramalı elektron mikroskop (SEM ve SEM-EDS), X-ışınları kırınımı (XRD), O-H izotop jeokimyası ve K/Ar yaş tayini incelemeleri gerçekleştirilmiştir. Aşırı killeşmiş granodiyorit porfirlerde bile, ilksel porfiritik doku izlenebilmekte, ince-kristalli kil ve kuvarslar homojen ve yer yer mikrolaminasyonlar şeklinde gözlenmektedir. Simektit ve karışık-tabakalı illit-simektit (I-S) mineralleri yapraksıtüysü, illit ve kaolinitler levhamsı biçimler sergilemektedir. Kuvars ve jarositler özşekilli kristaller, kristobalitler kurtçuk görünümlü, bu çalışmada ilk kez belirlenen krandallitler ise ince-taneli granüler topluluklar şeklinde gözlenmektedir. Arjilik zona ait örnekler fillik zona yakın iç kesimlerde (ileri arjilik zon) kuvars + I-S, kuvars + krandallit + jarosit ve kristobalit, dış kesimlerde (arjilik zon) ise kuvars + simektit + kaolinit birliktelikleri sergilemektedir. Simektitler dioktahedral bileşime sahiptir (d060<1.500 Å, oktahedral Al=1.47-1.66). I-S mineralleri yüksek illit bileşenli (I85-S15) ve R3 tipi ara tabakalanmaya sahip olup, oktahedral Al ve yapraklar arası K içerikleri sırasıyla 1.66-1.71 ve 0.58-0.75 arasında değişmektedir. I-S’lerin O-H izotop bileşimi, düşük sıcaklık koşullarında ve magmatik suyun baskın olduğu bir oluşumu işaret etmektedir. Jarosit içeren örneğin K/Ar yaş verisi (43.6 ± 1.0 My), arjilik alterasyonun plütonik sokulum sırasında veya hemen sonrasında (<1 My) başladığına işaret etmektedir. Elde edilen bulgular, Çöpler porfiriepitermal altın yatağında geniş yayılım sunan, düşük sıcaklık (<200 ºC) ve asidik koşullarda gelişmiş, alüminyum fosfat ve demir sülfat minerallerinin de geliştiği bir arjilik alterasyonun varlığını ortaya koymaktadır.

___

  • Akçay, M., Gümrük, O., McInnes, B., Evans, N., Jourdan, F. and Tessalina, F., 2016. Temporal development of magmatism in theregion of SivasErzincan and its effects on theoccurrence of Çöpler, Karakartal and Findiklidere ore deposits: a geochronological approach. 7th Geochemistry Symposium, 16-18 May 2016, Antalya, Turkey, p. 65.
  • Aktimur, T., 1986. Geology of Erzincan, Refahiye and Kemah Regions. General Diractorate of Mineral Research and Exploration (MTA), Ankara, Report No. 7932.
  • Aslan, N., Akçay, M., Gümrük, O., Szabo, C. and Guzmics, T., 2013. Multi-phase complex fluid inclusions from Çöpler (İliç, Erzincan, Central East Turkey) porphyry deposit, Abstract Book, ECROFI-XXII, 145-146.
  • Beaufort, D., Patrier, P., Laverret, E., Bruneton, P., and Mondy, J., 2005. Clay alteration associated with Proterozoic unconformity-type uranium deposits in the East Alligator River uranium field (Northern Territory, Australia). Economic Geology, 100, 515-536.
  • Bozkaya, Ö. and Yalçın, H., 2010. Geochemistry of mixed-layer illite-smectites from an extensional basin, Antalya Unit, Southwestern Turkey. Clays and Clay Minerals, 58, 5, 644-666.
  • Bozkaya, Ö., Yalçın, H. and Schroeder, P.A., 2017. Twostep mode of clay formation in the extensional basins: Cambrian–Ordovician clastic rocks of the Antalya unit, SW Turkey. Clay Minerals, 52, 365389.
  • Boztuğ, D., Harlavan, Y., Arehart, G.B. and Avci, N., 2006. K–Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divriği–Sivas region, eastern-central Anatolia, Turkey. Lithos, 97, 193-218.
  • Canbaz, O. and Gökçe, A., 2014. Microthermometric and stable isotopic (O and H) characteristics of fluid inclusions in the porphyry related Çöpler (İliç - Erzincan) gold deposit, central eastern Turkey. Central European Journal of Geosciences (Open Geosciences), 6(2), 139-147.
  • Corbett, G.J. and Leach, T.M., 1998. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. Society of Economic Geologists, Special Publication, No. 6. 237 p.
  • Craig, H., 1961. Isotopic variations in meteoric waters.Science, 133, 1702-1703.
  • Elders, W.A., Hoagland, J.R., McDowell, S.D. and Cobo, J.M., 1979. Hydrothermal mineral zones in the geothermal reservoir of Cerro Prieto. Geothermics, 8, 201-209.
  • Gaboreau, S., Beaufort, D., Viellard, Ph., Patrier, P. and Bruneton, P., 2005. Aluminum phosphate-sulphate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator River Uranium Field, Northern Territories, Australia. The Canadian Mineralogist, 43, 813-827.
  • Gaboreau, S., Cuney, M., Quirt, D. Beaufort, D., Patrier, P. and Mathieu, R., 2007. Significance of aluminium phosphate-sulfate minerals associated with U unconformity-type deposits: The Athabasca basin, Canada. American Mineralogist, 92, 267-280.
  • Gat, J.R., Shemesh, A., Tziperman, E., Hecht, A., Georgopoulus, D. and Basturk, O., 1996. The stable isotope composition of waters of the eastern Mediterranean Sea. Journal of Geophysical Research, 101, 6441-6451.
  • Georgieva, S. and Velinova, N., 2014. Florencite-(Ce, La, Nd) and crandallite from the advanced argillic alteration in the Chelopech high-sulphidation epithermal Cu-Au deposit, Bulgaria. Comptes rendus de l’Académie Bulgare des Sciences, 67, 12, 1669-1678.
  • Georgieva, S., Velinova, N., Petrunov, R., Moritz, R. and Chambefort, I., 2002. Aluminium phosphatesulphate minerals in the Chelopech Cu-Au deposit: Spatial development, chemistry and genetic significance. Geochemistry, Mineralogy and Petrology, Sofia, 39, 39-51.
  • Hikov, A., Lerouge, C. and Velinova, N., 2010. Geochemistry of alunite group minerals in advanced argillic altered rocks from the Asarel porphyry copper deposit, Central Srednogorie. Review of the Bulgarian Geological Society, 71, 133-148.
  • Imer, A., Richards, J.P. and Creaser, R.A., 2013. Age and tectono-magmatic setting of the Eocene Çöpler-Kabataş magmatic complex and porphyryepithermal Au deposit, East-Central Anatolia, Turkey. Mineralium Deposita, 48, 557-583.
  • Imer, A., Richards, J.P. and Muehlenbachs, K., 2016. Hydrothermal evolution of the Çöpler porphyryepithermal Au deposit, Erzincan Province, central eastern Turkey. Economic Geology, 111, 16191658.
  • Jankovic, S., 1986. Tethyan Eurasian Metallogenic Belt: relations of mineral associations and their tectonic setting. Geotectonica et Metallogenia, 10, 99-124.
  • Jingwen, M., Pirajno, F., Lehmann, B., Maocheng, L. and Berzina, A., 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79, 576-584.
  • Kuşçu, I., Kuşçu, G.G., Tosdal, R.M., Ulrich, T.D. and Friedman, R., 2010. Magmatism in the southeastern Anatolian orogenic belt: transition from arc to post-collisional setting in an evolving orogen. In: Sosson, M., Kaymakci, N., Stephenson, R.A., Bergerat, F., Starostenko, V. (eds) Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society, London, Special Publications, 340, 437-460.
  • Kuşçu, I., Tosdal, R.M., Gençalioğlu-Kuşçu, G., Friedman, R. and Ullrich, T.D., 2013. Late Cretaceous to middle Eocene magmatism and metallogeny of a portion of the southeastern Anatolian orogenic belt, east-central Turkey: Economic Geology, 108, 641–666.
  • Marfil, R., La Iglesia, A., Estupiñan, J., 2013. Origin and nature of the aluminium phosphate-sulphate minerals (APS) associated with uranium mineralization in Triassic red-beds (Iberian Range, Spain). Estudios Geológicos, 69, 21-34.
  • Martínez-Serrano, R.G., 2002. Chemical variations in hydrothermal minerals of the Los Humeros geothermal system, Mexico. Geotermics, 31, 579612.
  • Meunier, A., Velde, B., 2004. Illite: Origins, Evolution and Metamorphism. Springer Science, 286 p.
  • Mineral Research and Exploration Institute of Turkey (MTA), 2002. Geologic map of Turkey (Sivas Quadrangle), Ankara, Mineral Research and Exploration Institute of Turkey, scale 1:500,000, 1 sheet.
  • Moore, D.M. and Reynolds, R.C., Jr., 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 378 pp.
  • Önal, A., Boztuğ, D., Kürüm, S., Harlavan, Y., Arehart, G.B. and Arslan, M. 2005. K-Ar age determination, whole-rock and oxygen isotope geochemistry of the post-collisional Bizmişen and Çaltı plutons, SW Erzincan, Eastern Central Anatolia, Turkey. Geological Journal, 40, 457-476.
  • Özgül N., Turşucu A., Özyardımcı N., Şenol M., Bingöl İ. and Uysal S., 1981. Geology of Munzur Mountains. General Directorate of Mineral Research and Exploration (MTA), Ankara, Report No. 6995.
  • Özgül, N. and Turşucu, A., 1984. Stratigraphy of the Mesozoic carbonate sequence of the Munzur mountains (eastern Turkey), in Tekeli O. And Göncüoglu M. C., eds., Geology of the Taurus Belt. General Diractorate of Mineral Research and Exploration (MTA), Ankara, 1984, 173-181.
  • Özer E., 1994. Stratigraphy of the Munzur mountains (Kemah-Iliç-Erzincan), Bulletin of the Geological Society of Turkey, 37, 53-64.
  • Pirajno, F., 2010. Hydrothermal Processes and Mineral Systems. Springer, London, 1250 p.
  • Rasmussen, B., 1996. Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite and xenotime) in marine sandstones: a major sink for oceanic phosphorus. American Journal of Science, 296, 601-632.
  • Ripp, G.S., Kanakin, S.V. and Shcherbakova, M.N., 1998. Phosphate mineralisation in metamorphosed high-alumina rocks of Ichetuyskoye ore occurrence (south-west Transbaikali). Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 127, 6, 98-108.
  • Rye, R.O., 1993. The evolution of magmatic fluids in the epithermal environment: The stable isotope perspective. Economic Geology, 88, 733-753.
  • Rye, R.O. and Alpers, C.N., 1997. The stable isotope geochemistry of jarosite. USGS Open-File Report, 97-88.
  • Rye R.O., Bethke, P.M. and Wasserman, M.D., 1992. The stable isotope geochemistry of acid sulfate alteration. Economic Geology, 87, 225-262.
  • Savin, S.M. and Epstein, S., 1970. The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta, 34, 25-42.
  • Savin, S.M. and Lee, M., 1988. Isotopic studies of phyllosilicates. Pp. 189-223 in: Hydrous Phyllosilicates (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.
  • Seres-Hartai, E. and Földessy, J., 2003. Mineralogy of gold and the characteristics of host rock in the Podpolom (Klokoč) high sulfidation type epithermal deposit. Acta Montanistica Slovaca Ročník, 8, 22-29.
  • Sheppard, S.M.F., Nielsen, R.L. and Taylor, H.P., Jr., 1969. Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology, 64, 755-777.
  • Taylor Jr., H.P., 1979. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. Pp. 236-272 in: Geochemistry of Hydrothermal Ore Deposits, 2nd ed. (H.L. Barnes editor). John Wiley & Sons, New York.
  • Tunç, M., Özçelik, O., Tutkun, Z. and Gökçe, A., 1991. Basic geological characteristics of the Divriği-Yakuplu-İliç-Hamo (Sivas) area, Turkish Journal Engineering and Environmental Sciences, 15, 225-245.
  • Voudouris, P.C. and Melfos, V., 2012. Aluminumphosphate-sulfate (APS) minerals in the sericiticadvanced argillic alteration zone of the Melitena porphyry-epithermal Mo-Cu ± Au ± Re prospect, western Thrace, Greece. Neues Jahrbuch für Mineralogie - Abhandlungen (Journal of Mineralogy and Geochemistry), 190, 11-27.
  • Weaver, C.E. and Pollard, L.D., 1973. The Chemistry of Clay Minerals. Developments in Sedimentology, 15, Elsevier, Amsterdam, 213 pp.
  • Wilson, J.A., 1985. Crandallite group minerals in the Helikian Athabasca group in Alberta, Canada. Canadian Journal of Earth Sciences, 22, 637-641.
  • Yeh, H.-W., 1980. D/H ratios and late stage dehydration of shales during burial. Geochimica et Cosmochimica Acta, 44, 341-352.