Gölmarmara Fayı’nın Morfotektonik Evriminin CBS Tabanlı Yöntemlerle Araştırılması, Gediz Grabeni, Batı Anadolu

Gölmarmara Havzası, antitetik/sintetik normal fay basamakları ile denetlenen ve bir seri horst-graben sistemi olarak tanımlanan Batı Anadolu Genişleme Bölgesi’ndeki Gediz Grabeni’nin en kuzeydeki bölümünü oluşturur. Bu bölümün jeolojisi iyi bilinmesine rağmen, aktif tektonik ve jeomorfoloji çalışmaları açısından yeteri kadar incelenmemiştir. Bu çalışmanın amacı, havzanın güney sınırını oluşturan Gölmarmara Fayı’nın segment bazında tanımlanarak Kuvaterner dönem aktivitesini ve yapısal evrimini ortaya koymaktır.7 km uzunluğundaki İsmetpaşa ve 11 km uzunluğundaki Hacıbaştanlar segmentlerinden oluşan KB-GD uzanımlı Gölmarmara Fayı, taban bloğunda 26 drenaj havzasına ve 23 üçgen yüzey morfolojisine sahiptir. Bu yapılar üzerinde, sayısal yükseklik modeli temelli morfotektonik analizler (Smf, Vf, AF, HI, Shp, SL, Yükselim Oranı) yapılmıştır. Elde edilen sonuçlar arazi verileri ile birlikte değerlendirilerek İsmetpaşa Segmenti’nin Hacıbaştanlar Segmenti’ne göre daha hızlı yükselime ve aktiviteye sahip olduğu ve bu iki segmentin, fay zonunun gelişimi sırasında bir aktarım rampasıyla birbirine bağlandığı tespit edilmiştir. Oluşumundan günümüze kadar 3 yapısal evreden geçen Gölmarmara Fayı’nın ilk evresinde kademeli (en-echelon) nitelikli faylardan oluştuğu söylenebilir. Morfometrik indisler ve saha verileri, Gölmarmara Fayı’nın orta-yüksek derecede aktif, eğim atımlı normal fay segmentlerinden meydana geldiğini ve Mw:6,4 büyüklüğünde depremler oluşturabileceğini göstermektedir. Geometrik olarak 2, sismik açıdan ise 1 segmentten oluşan Gölmarmara Fayı için, 0,179 ila 0,518 mm/yıl arasında değişen (fayın merkezinde artan, uç kısımlarında azalan) yükselim oranı hesaplanmıştır. Bu değerler Gediz Grabeni bölgesinde bulunan diğer aktif faylardaki yükselim hızı miktarları ile benzerlik göstermektedir.

Investigation of Morphotectonic Evolution of Gölmarmara Fault Using GIS-Based Methods, Gediz Graben, Western Anatolia

The Gölmarmara Basin forms the northern branch of the Gediz Graben, which constitutes a series of horst-graben systems controlled by antithetic and synthetic normal fault steps in the Western Anatolia Extensional Province. Although geology of this section is well known, it is not studied enough in terms of active tectonics and geomorphology. The aim of this study is to reveal fault segments on the basis of Quaternary activity and structural evolution of the Gölmarmara Fault forming the southern boundary of the basin.The NW-SE trending Gölmarmara Fault, which consists of the 7 km-long İsmetpaşa and 11 km-long Hacıbaştanlar segments, has 26 drainage basins and 23 triangular facets in its footwall. Morphometric analyses (Smf, Vf, AF, HI, Shp, SL, Slip Rate) based on the digital elevation model were performed for these structures. According to combined results of our morphometry and field studies, the İsmetpaşa Segment has higher uplift and activity than the Hacıbaştanlar Segment, and they are linked by a relay ramp developing during the evolution of a complete fault zone. It can be said that the Gölmarmara Fault, which was found to have passed through 3 phases from its formation to the present day, is an en-echelon fault similar to when it formed. Morphometric indices and field data indicate that the Gölmarmara Fault is composed of medium-highly-active dip-slip normal fault segments and may cause earthquakes with a magnitude of Mw: 6.4. The Gölmarmara Fault, consisting of 2 geometric and 1 seismic segment, has uplift rate ranging from 0.179 to 0.518 mm/year (increasing at the center, and decreasing at the tips of the fault). These values are similar to uplift rates calculated for other active normal faults in the Gediz Graben.

___

  • Altunel, E., 1999. Geological and geomorphological observations in relation to the 20 September 1899 Menderes earthquake, western Turkey. Journal of the Geological Society, 156 (2), 241-246.
  • Bahadir, M., Özdemir, M.A., 2011. Acıgöl Havzası’nın Sayısal Topoğrafik Analiz Yöntemleri İle Morfometrik Jeomorfolojisi. Journal of International Social Research, 4 (18), 323-344. Bozkurt, E., 2001. Neotectonics of Turkey–a synthesis. Geodinamica acta, 14 (1-3), 3-30.
  • Bozkurt, E., Sözbilir, H., 2006. Evolution of the largescale active Manisa Fault, Southwest Turkey: implications on fault development and regional tectonics. Geodinamica Acta, 19 (6), 427-453.
  • Bull, W.B., 1977. Tectonic geomorphology of the Mojave Desert: US, Geological Survey Contract Report 14-08-001-G-394, Office of Earthquakes, Volcanoes, and Engineering, California: Menlo Park, 188.
  • Bull, W.B., 2007. Mountain Fronts. Tectonic Geomorphology of Mountains. Blackwell Publishing Ltd, 75-116.
  • Bull, W.B., 2008. Tectonic geomorphology of mountains: a new approach to paleoseismology. John Wiley and Sons, Oxford, 315 s.
  • Bull, W.B., McFadden, L.D., 1977. Tectonic geomorphology north and south of the Garlock fault, California (Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium, Ed.: Doehring, D.O.). State University of New York, Binghamton, 115–138. Burbank, D.W., Anderson, R.S., 2011. Tectonic Geomorphology. John Wiley and Sons, Oxford, 454.
  • Candan, O., Oberhänslı, R., Dora, Ö., Çetinkaplan M., Koralay, O.E., Rımmelé, G., Chen, F., Akal, C., 2011. Menderes Masifi’nin Pan-Afrikan Temel ve Paleozoyik - Erken Tersiyer Örtü Serilerinin Polimetamorfik Evrimi. Maden Tetkik ve Arama Dergisi, 142, 123-165.
  • Chen, Y.C., Sung, Q.C., Cheng, K.Y., 2003. Alongstrike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on streamgradient and hypsometric analysis. Geomorphology, 56, 109–137.
  • Cox, R.T. 1994. Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106 (5), 571-581.
  • Çiftçi, N.B., Bozkurt, E., 2007. Anomalous stress field and active breaching at relay ramps: a field example from Gediz Graben, SW Turkey. Geological Magazine, 144(4), 687-699.
  • Daxberger, H., Riller, U., 2015. Analysis of geomorphic indices in the southern Central Andes (23°–28°S): evidence for pervasive Quaternary to recent deformation in the Puna Plateau. Geomorphology, 248, 57–76.
  • DSİ, 1971. Akhisar-Selendi Ovaları Jeofizik Rezistivite Etüd Raporu, Devlet Su İşleri Genel Müdürlüğü 2. Bölge İzmir, Devlet Su İşleri İç Kaynaklar.
  • DSİ, 1973. Akhisar-Selendi Ovaları Jeofizik Rezistivite Etüd Raporu, Devlet Su İşleri Genel Müdürlüğü 2. Bölge İzmir, Devlet Su İşleri İç Kaynaklar.
  • Emre, Ö., Duman, T.Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., Can, T., 2018. Active fault database of Turkey. Bulletin of Earthquake Engineering, 16 (8), 3229-3275.
  • Emre, Ö., Özalp S., Duman, T., 2012. 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi İzmir (NJ35-7) Paftası. Seri No:6. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü Jeoloji Etütleri Dairesi Harita Arşivi.
  • Font, M., Amorese, D., Lagarde, J.L., 2010. DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: the Normandy intraplate area (NW France). Geomorphology, 119 (3-4), 172-180.
  • Gürboğa, Ş., 2014. Structural analyses of Şaphane relay ramps and fault linkage evolution in active extensional regime, western Turkey. Turkish Journal of Earth Sciences, 23(6), 615-626.
  • Hack, J.T., 1973. Stream-profile analysis and streamgradient index. Journal of Research of the us Geological Survey, 1 (4), 421-429.
  • Hakyemez, M.Y., Göktaş, F., Erkal, T., 2013. Gediz Grabeninin Kuvaterner Jeolojisi ve Evrimi. Türkiye Jeoloji Bülteni, 56 (2), 1-26.
  • Hare, P.W., Gardner, T.W., 1985. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology, 4, 75-104.
  • Hergarten, S., Robl, J., Stüwe, K., 2016. Tectonic geomorphology at small catchment sizes–extensions of the stream-power approach and the χ method. Earth Surface Dynamics, 4 (1), 1-9.
  • Huang, X., Niemann, J.D., 2006. An evaluation of the geomorphically effective event for fluvial processes over long periods. Journal of Geophysical Research: Earth Surface. 111, F03015.
  • Hurtrez, J.E., Sol, C., Lucazeau, F., 1999. Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (Central Nepal). Earth Surface Processes and Landforms, 24 (9), 799-808.
  • Kale, V.S., Shejwalkar, N., 2008. Uplift along the western margin of the Deccan Basalt Province: Is there any geomorphometric evidence?. Journal of Earth System Science, 117 (6), 959-971.
  • Kaya, O., 1979. Ortadoğu Ege çöküntüsünün (Neojen) stratigrafisi ve tektoniği. Türkiye Jeoloji Kurumu Bülteni, 22 (1), 35-58.
  • Kaya, O., 1981. Miocene reference section for the coastal parts of West Anatolia. Newsletters on Stratigraphy, 164-191.
  • Kaya, O., Ünay, E., Saraç, G., Eichhorn, S., Hassenrück, S., Knappe, A., Mayda, S., 2004.
  • Halitpaşa transpressive zone: implications for an Early Pliocene compressional phase in central western Anatolia, Turkey. Turkish Journal of Earth Sciences, 13 (1), 1-13.
  • Keller, E. A., 1986. Investigation of active tectonics: use of surficial earth processes (Active Tectonics, Ed.: Wallace, R.E.). Studies in Geophysics. Nat. Acad. Press, Washington, DC, 136–147.
  • Keller, E. A., Pinter, N., 2002. Active tectonics: earthquakes, uplift, and landscape. PrenticeHall, New Jersey.
  • Kent, E., Boulton, S. J., Stewart, I. S., Whittaker, A. C., Alçiçek, M. C., 2016. Geomorphic and geological constraints on the active normal faulting of the Gediz (Alaşehir) Graben, Western Turkey. Journal of Geological Society, 173 (4), 666-678.
  • Ketin, İ., 1968. Türkiye’nin Genel Tektonik Durumu İle Başlıca Deprem Bölgeleri Arasındaki İlişkiler. Maden Tetkik ve Arama Dergisi, 71, 129-134.
  • Kirby, E., and Whipple, K. X., 2012. Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54-75.
  • Koçyiğit, A., Yusufoğlu, H., Bozkurt, E., 1999. Evidence from the Gediz Graben for Episodic Two-stage Extension in Western Turkey. Journal of the Geological Society, 156, 605-616.
  • Konak, N. 2002. 1/500.000 Türkiye Jeoloji Haritası İzmir Paftası, (Şenel, M., (ed.)) Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara..
  • Konak, N., Akdeniz, N., Armagan, F., 1980. Geology of the Akhisar-Gölmarmara-Gördes-Sindirgi Region. Min. Res. Expl., Report, (6916), 1-177.
  • Lifton, N. A., Chase, C. G., 1992. Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California. Geomorphology, 5 (1-2), 77-114.
  • Lips, A. L., Cassard, D., Sözbilir, H., Yilmaz, H., Wijbrans, J. R., 2001. Multistage exhumation of the Menderes massif, western Anatolia (Turkey). International Journal of Earth Sciences, 89 (4), 781-792.
  • Matos, A., Dilts, T.E., 2019. Hypsometric Integral Toolbox for ArcGIS®. University of Nevada Reno.
  • Mayer, L., 1986. Tectonic Geomorphology of Escarpments and Mountain Fronts. Active Tectonics National Academy Press, Washington D.C.
  • Moglen, G. E., Bras, R. L., 1995. The effect of spatial heterogeneities on geomorphic expression in a model of basin evolution. Water Resources Research, 31 (10), 2613-2623.
  • Montgomery, D. R., Brandon, M. T., 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201 (3-4), 481-489.
  • Moussi, A., Rebaï, N., Chaieb, A., and Saâdi, A., 2018. GIS-based analysis of the Stream Length-Gradient Index for evaluating effects of active tectonics: a case study of Enfidha (North-East of Tunisia). Arabian Journal of Geosciences, 11 (6), 123.
  • Mozafari, N., Tikhomirov, D., Sumer, Ö., Özkaymak, Ç., Uzel, B., Yeşilyurt, S., Ivy-Ochs, S., Vockenhuber, C., Sözbilir, H., Akçar, N., 2019a. Dating of active normal fault scarps in the Büyük Menderes Graben (western Anatolia) and its implications for seismic history. Quaternary Science Reviews, 220, 111-123.
  • Mozafari, N., Sümer, Ö., Tikhomirov, D., Ivy-Ochs, S., Alfimov, V., Vockenhuber, C., İnci, U., Sözbilir, H., Akcar, N., 2019b. Holocene seismic activity of the Priene-Sazlı Fault revealed by cosmogenic 36Cl, Western Anatolia, Turkey 2. Turkish Journal of Earth Sciences, 28 (3), 410-437.
  • Ohmori, H., 1993. Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology, 8 (4), 263-277.
  • Okay, A.İ., Satır, M., Siyako, M., Monie, P., Metzger, R., Akyüz, S., 1996. Paleo- and Neo-Tethyan events in northwestern Turkey: Geologic ve geochronologic constrains. In A. Yin, T.M. Harrison (eds.). United States: Cambridge University Press. The Tectonic Evolution of Asia, 420−441.
  • Okay, A. I., Siyako, M., Bürkan, K. A., 1991. Geology and tectonic evolution of the Biga Peninsula, northwest Turkey. Bulletin of the Technical University of Istanbul, 44 (1-2), 191-256.
  • Özkaymak, Ç., 2015. Tectonic analysis of the Honaz Fault (western Anatolia) using geomorphic indices and the regional implications. Geodinamica Acta, 27 (2-3), 110-129.
  • Özkaymak, Ç., Sözbilir, H., 2008. Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, western Anatolia. Turkish Journal of Earth Sciences, 17 (3), 615-635.
  • Özkaymak, Ç., Sözbilir, H., 2012. Tectonic geomorphology of the Spildağı high ranges, western Anatolia. Geomorphology, 173, 128-140.
  • Özkaymak, Ç., Sözbilir, H., Uzel, B., 2013. Neogene– Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics, 65, 117-135.
  • Özkaymak, Ç., Sözbilir, H., Uzel, B., Akyüz, H. S., 2011. Geological and paleoseismological evidence for late Pleistocene–Holocene activity on the Manisa Fault Zone, western Anatolia. Turkish Journal of Earth Sciences, 20, 449–474.
  • Özsayın, E., 2016. Relative tectonic activity assessment of the Çameli Basin, Western Anatolia, using geomorphic indices. Geodinamica Acta, 28 (4), 241-253.
  • Perez-Pena, J.V., Azanon, J.M., Azor, A., 2009a. CalHypso: an ArcGIS® extension to calculate hypsometric curves and their statistical moments: applications to drainage basin analysis in SE Spain. Comput. Geosci. 35, 1214–1223.
  • Perez-Pena, J.V., Azanon, J.M., Azor, A., Delgado, J., Gonzalez-Lodeiro, F., 2009b. Spatial analysis of stream power using GIS: SLk anomaly maps. Earth Surf. Process. Landf. 34, 16–25.
  • Perez-Pena, J.V., Azor, A., Azanon, J.M., Keller, E.A., 2010. Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119, 74–87.
  • Petit, C., Meyer, B., Gunnell, Y., Jolivet, M., San’Kov, V., Strak, V., Gonga-Saholiariliva, N., 2009. Height of faceted spurs, a proxy for determining long-term throw rates on normal faults: Evidence from the North Baikal Rift System, Siberia. Tectonics, 28 (6), doi:10.1029/2009TC002555.
  • Queiroz, G. L., Salamuni, E., Nascimento, E. R., 2015. Knickpoint finder: A software tool that improves neotectonic analysis. Computers and geosciences, 76, 80-87.
  • Ramírez-Herrera, M. T., 1998. Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 23 (4), 317-332.
  • Ring, U., Laws, S., Bernet, M., 1999. Structural analysis of a complex nappe sequence and lateorogenic basins from the Aegean Island of Samos, Greece. Journal of Structural Geology, 21 (11), 1575-1601.
  • Roberts, G. P., 1996. Variation in fault-slip directions along active and segmented normal fault systems. Journal of Structural Geology, 18 (6), 835-845.
  • Rockwell, T. K., Keller, E. A., Clark, M. N., Johnson, D. L., 1984. Chronology and rates of faulting of Ventura River terraces, California. Geological Society of America Bulletin, 95 (12), 1466-1474.
  • Schumm, S. A., Dumont, J. F., Holbrook, J. M., 2002. Active tectonics and alluvial rivers. Cambridge University Press, Cambridge, 276 p.
  • Schwanghart, W., Scherler, D., 2014. TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2 (1), 1-7.
  • Selby, M. J., 1980. A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie Stuttgart, 24 (1), 31-51.
  • Seyіtoǧlu, G., Scott, B. C., 1992. The age of the Büyük Menderes graben (west Turkey) and its tectonic implications. Geological Magazine, 129 (2), 239-242.
  • Seyitoǧlu, G., Scott, B., 1991. Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128 (2), 155-166.
  • Seyitoğlu, G., Scott, B. C., 1996. Age of the Alaşehir graben (west Turkey) and its tectonic implications. Geological Journal, 31 (1), 1-11.
  • Silva, P. G., Goy, J. L., Zazo, C., Bardajı, T., 2003. Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50 (1-3), 203-225.
  • Softa, M., Emre, T., Sözbilir, H., Spencer, J. Q., Turan, M., 2018. Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey. Geodinamica Acta, 30 (1), 249-264.
  • Sözbilir, H., 2001. Extensional tectonics and the geometry of related macroscopic structures: field evidence from the Gediz detachment, western Turkey. Turkish Journal of Earth Sciences, 10 (2), 51-67.
  • Sözbilir, H., 2002. Geometry and origin of folding in the Neogene sediments of the Gediz Graben, western Anatolia, Turkey. Geodinamica Acta, 15 (5-6), 277-288.
  • Sözbilir, H., 2005. Oligo-Miocene extension in the Lycian orogen: evidence from the Lycian molasse basin, SW Turkey. Geodinamica Acta, 18 (3-4), 255-282.
  • Sözbilir, H., Erkül, F., Sümer, Ö., 2003. Field evidence for post-Miocene NE-trending accomodation zone lying between Gümüldür (İzmir) and Bigadiç (Balıkesir), west Anatolia. In Geological Congress of Turkey, Ankara, 85-86.
  • Sözbilir, H., Sümer, Ö., Uzel, B., Ersoy, Y., Erkül, F., İnci, U., Özkaymak, Ç., 2009. 17-20 Ekim 2005-Sığacık Körfezi (İzmir) depremlerinin sismik jeomorfolojisi ve bölgedeki gerilme alanları ile ilişkisi, Batı Anadolu. Türkiye Jeoloji Bülteni, 52 (2), 217-238.
  • Sözbilir, H., Sarı, B., Uzel, B., Sümer, Ö., Akkiraz, S., 2011. Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: the Kocaçay Basin, western Anatolia, Turkey. Basin Research, 23 (4), 423-448.
  • Strahler, A. N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63 (11), 1117-1142.
  • Struth, L., Garcia-Castellanos, D., Viaplana-Muzas, M., Vergés, J., 2019. Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins: From endorheism to exorheism. Geomorphology, 327, 554-571.
  • Şaroğlu, F., Emre, O., Kuscu, I., 1992. Active fault map of Turkey. General Directorate of Mineral Research and Exploration, Ankara.
  • Şengör, A. M. C., 1987. Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: examples from western Turkey. Geological Society, London, Special Publications, 28 (1), 575-589.
  • Şengör, A. M. C., Görür, N., Şaroğlu, F., 1985. Strikeslip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, in Strike-slip Faulting and Basin Formation. Biddle, K.T., Christie-Blick, N., Soc. Econ. Paleont. Min. Spec. Publ., 227-264.
  • Taymaz, T., Jackson, J., McKenzie, D., 1991. Active tectonics of the north and Regional-scalecentral Aegean Sea. Geophysical Journal International, 106 (2), 433-490.
  • Tepe, Ç., Sözbilir, H., 2017. Tectonic geomorphology of the Kemalpaşa Basin and surrounding horsts, southwestern part of the Gediz Graben, Western Anatolia. Geodinamica Acta, 29 (1), 70-90.
  • Topal, S., Keller, E., Bufe, A., Koçyiğit, A., 2016. Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey. Geomorphology, 259, 55-69.
  • Topal, S., 2019a. Evaluation of relative tectonic activity along the Priene-Sazlı Fault (Söke Basin, southwest Anatolia): Insights from geomorphic indices and drainage analysis. Journal of Mountain Science, 16 (4), 909-923.
  • Topal, S., 2019b. Karacasu Fayı’nın (GB Türkiye) göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (1), 37-48.
  • Troiani, F., Galve, J. P., Piacentini, D., Della Seta, M., and Guerrero, J., 2014. Spatial analysis of stream length-gradient (SL) index for detecting hillslope processes: a case of the Gállego River headwaters (Central Pyrenees, Spain). Geomorphology, 214, 183-197.
  • Tsimi, C., and Ganas, A., 2015. Using the ASTER global DEM to derive empirical relationships among triangular facet slope, facet height and slip rates along active normal faults. Geomorphology, 234, 171-181.
  • Uzel, B., 2016. Field evidence for normal fault linkage and relay ramp evolution: the Kırkağaç Fault Zone, western Anatolia (Turkey). Geodinamica Acta, 28 (4), 311-327.
  • Uzel, B., Sözbilir, H., Özkaymak, Ç., 2012. Neotectonic evolution of an actively growing superimposed basin in western Anatolia: The inner bay of Izmir, Turkey. Turkish Journal of Earth Sciences, 21 (4), 439-471.
  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakcı, N., Langereis, C. G., 2013. Structural evidence for strike-slip deformation in the İzmir–Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal of Geodynamics, 65, 94-116.
  • Uzel, B., Sözbilir, H., 2008. A first record of a strikeslip basin in western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish Journal of Earth Sciences, 17 (3), 559-591.
  • Wells, S. G., Bullard, T. F., Menges, C. M., Drake, P. G., Karas, P. A., Kelson, K. I., Wesling, J. R., 1988. Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica. Geomorphology, 1 (3), 239-265.
  • Willgoose, G., Hancock, G., 1998. Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 23 (7), 611-623.
  • Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Willett, S. D., 2006. Tectonics from topography: Procedures, promise, and pitfalls. Special papers-geological society of America, 398, 55.
  • Xue, L., Gani, N. D., Abdelsalam, M. G., 2017. Geomorphologic proxies for bedrock rivers: A case study from the Rwenzori Mountains, EastAfrican Rift system. Geomorphology, 285, 374-398.