Kapak Mansabında Batmış Hidrolik Sıçramanın Deneysel ve Sayısal Modellenmesi

Mansabında batmış hidrolik sıçramanın oluştuğu düşey bir kayar kapak içeren açık kanal modelinde, Fr1=1.77 ve 1.35 olan akımlar için su yüzü profili ölçülmüştür. Akımı idare eden denklemler, deney koşullarındaki akımlar için Sonlu Hacimler yöntemi ile sayısal olarak çözülmüştür. Sayısal modellemelerde, Standard k-, Renormalization-group k- ve Realizable k-ε türbülans kapatma modelleri kullanılmıştır. Sayısal model bulgularının deneysel olarak doğrulanmasına yönelik yapılan karşılaştırmalar, serbest su yüzü profili ve batmış hidrolik sıçrama geometrisinin belirlenmesinde Renormalization-group k-ε türbülans modelinin diğer ikisine göre daha başarılı olduğunu göstermiştir

-

Experimental and Numerical Modeling of Submerged Hydraulic Jump Downstream of a Sluice Gate The flow profile in an open channel model with submerged hydraulic jump downstream of a vertical sluice gate is measured for flow cases with Fr1=1.77 and 1.35. The governing equations are numerically solved using Finite Volume method for the flows having the same conditions with experiments. In the numerical simulations, Standard k-, Renormalization-group k-ε and Realizable k-ε turbulence closure models are employed. Experimental validations of the numerical results show that computations using Renormalization-group k-ε turbulence model are the most successful, among the three, in predicting the free surface of the flow and the geometry of the submerged hydraulic jump

___

  • Ashgriz, N., Barbat, T. ve Wang, G., “A computational Lagrangian-Eulerian advection remap for free surface flows”, International Journal for Numerical Methods in Fluids, 44, 1-32, 2004.
  • Sarker, M.A. ve Rhodes, D.G. (2004). “Calculation of free-surface profile over a rectangular broad-crested weir”, Flow Measurement and Instrumentation, 15, 215- 219, 2004.
  • Kırkgöz, M.S., Aköz, M.S. ve Öner A.A., “Experimental and theoretical analyses of 2D flows upstream of broad-crested weirs”, Canadian Journal of Civil Engineering, 35(9), 975-986, 2008.
  • Kırkgöz, M.S., Aköz, M.S. ve Öner, A.A., “Numerical modeling of flow over a chute spillway”, Journal of Hydraulic Research. 47(6), 790-797, 2009.
  • Aköz, M.S. ve Kırkgöz, M.S., “Numerical and experimental analyses of the flow around a horizontal wall-mounted circular cylinder”, Transactions of the Canadian Society for Mechanical Engineering, 33(2), 29-55, 2009.
  • Aköz, M.S., Kırkgöz, M.S. ve Öner, A.A., “Experimental and numerical modeling of a sluice gate flow”, Journal of Hydraulic Research. 47(2), 167-176, 2009.
  • Ma, F., Hou, Y. ve Prinos, P., “Numerical calculation of submerged hydraulic jump”, Journal of Hydraulic Research, 39(5), 1-11, 2002.
  • Rajaratnam, N., “Hydraulic jumps”, Advances in Hydroscience, 4, Editör:Chow, V.T., Academic Press, New York, A.B.D., 197-279, 1967.
  • Wilcox, D.C., Turbulence Modeling For CFD, DCW Industries, Inc., California, A.B.D., 2000.
  • Launder B. E. ve Spalding D. B., Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972.
  • Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. ve Speziale, C.G., “Development of turbulence models for shear flows by a double expansion technique”, Physics of Fluids, 4(7), 1510-1520, 1992.
  • Shih, T.-W., Liou, W.W., Shabbir, A., Yang, Z. ve Zhu, J., “A new k-ε eddy-viscosity model for high Reynolds number turbulent flows - model development and validation”, Computers and Fluids, 24(3), 227–238, 1995.
  • Hirt, C.W. ve Nichols, B.D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics, 39, 201-225, 1981.
  • ANSYS Inc., Release 12.1. www.ansys.com, 2008.
  • Patankar, S.V. ve Spalding, D.B., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, International Journal of Heat and Mass Transfer, 15, 1787-1806, 1972.
  • Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, 1980.
  • Chen, H.C. ve Patel, V.C., “Near-wall turbulence models for complex flows including separation”, AIAA journal, 26(6), 641-648, 1988.
  • Jongen, T., Simulation and Modeling of Turbulent Incompressible Flows, PhD thesis, EPF Lausanne, Switzerland, 1992.
  • Kırkgöz, M.S. ve Ardıçlıoğlu, M., “Velocity profiles of developing and developed open channel flow”, Journal of Hydraulic Engineering, 123(12), 1099-1105, 1997.
  • Roache, P.J., “Verification of codes and calculations”, AIAA Journal, 36(5), 696-702, 1998.
  • Çelik, İ.B., Ghia, U., Roache, P.J., Freitas, C.J., Coleman, H. ve Raad, P.E., “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications”. ASME Journal of Fluids Engineering, 130(1), 1-4, 2008.