Pasif radar hedef tespit performansinin iyileştirilmesi için çoklu ortak FM radyo vericilerin kullanılmasının araştırılması

Gizlioperasyon kabiliyeti, uygun maliyet ve düşük bakım gereksinimi gibi özelliklerinedeniyle pasif radar sistemlerine olan ilgi giderek artmaktadır. Busistemlerin en büyük avantajı ise kendilerine ait bir vericiye ihtiyaç duymadanortamda bulunan vericileri kullanarak hedef tespit ve takibi yapabilmeleridir.Son yıllarda sayıları artan kablosuz iletişim vericilerinin tek bir noktadatoplanmaya başlanması ise pasif radar sistemleri için yeni fırsatlaryaratmaktadır. Bu çalışmada, ortak bir verici noktasından, birden çok frekanstayapılan FM radyo yayınların birlikte kullanılmasıyla pasif radar sistemlerindehedef tespit performansının arttırılması araştırılmıştır. Önerilen yöntemsayısallaştırılan geniş bir frekans bandından ayrıştırılan tekil kanallarınyazılım tabanlı radyo teknolojileri ile toplanarak hedef tespit performansınınartırılmasını sağlamaktadır. Gerçek FM radyo verileri ile yapılan testlerdeönerilen yöntemin sisteme ek yük getirmeden hedef tespit performansınıartırdığı, modülasyon içeriği sebebiyle pasif radar sistemlerinde oluşanperformans dalgalanmalarını ve oluşan hayalet hedefleri azalttığı görülmüştür.

Investigation of passive radar target detection performance improvement by using multiple co-located FM radio transmitters

Interest in passive radar systems is increasingbecause of its hidden operational capabilities, cost effectiveness and lowmaintenance requirements. The greatest advantage of these systems is that theycan detect and follow targets using the illuminators in the environment withoutthe need for a dedicated transmitter. In recent years, the increasing number ofwireless transmitters have begun to be gathered at a single point, creating newopportunities for passive radar systems. In this study, target detectionperformance in passive radar systems by using multiple frequency FM radiobroadcasts from a common transmitter point is investigated. Accordingly, areal-time applicable method proposed that combines the singular channels on abroad frequency band with software based radio technologies to improve targetdetection performance. It has been shown that the proposed method improves thetarget detection performance of FM signals without introducing additional loadto the system and reduces the performance fluctuations and ghost targets thatare generated in passive radar systems due to the modulation content.

Kaynakça

Tuysuz B, Mahmutoglu Y. “Measurement and mapping of the GSM-based electromagnetic pollution in the Black Sea region of Turkey”. Electromagnetic Biology and Medicine, 36(2), 132-140, 2017.

Howland PE, Maksimiuk D, Reitsma G. “FM radio based bistatic radar”. IEE Proceedings-Radar, Sonar and Navigation, 152(3), 107-115, 2005.

Daniel L, Hristov S, Lyu X, Stove AG, Cherniakov M, Gashinova M. “Design and validation of a passive radar concept for ship detection using communication satellite signals”. IEEE Transactions on Aerospace and Electronic Systems, 53(6), 3115-3134, 2017.

Zhao Y, Zhao Y, Zhao C. “A novel algebraic solution for moving target localization in multi-transmitter multi-receiver passive radar”. Signal Processing, 143, 303-310, 2018.

Li W, Tan B, Piechocki R. “Passive radar for opportunistic monitoring in E-health applications”. IEEE Journal of Translational Engineering in Health and Medicine, 6, 1-10, 2018.

Griffiths H, Baker C. “Measurement and analysis of ambiguity functions of passive radar transmissions”. IEEE International Radar Conference, Arlington, USA, 9-12 May 2005.

Colone F, Bongioanni C, Lombardo P. “Multifrequency integration in FM radio-based passive bistatic radar, Part I: Target detection”. IEEE Aerospace and Electronic Systems Magazine, 28(4), 28-39, 2013.

Zhang C, Wu Y, Wang J, Luo Z. “FM-based multi-frequency passive radar system”. 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Hong Kong, China, 5-8 August 2016.

Ginolhac G, Schmitt F, Daout F, Forster P. “Multifrequency and multistatic inverse synthetic aperture radar, with application to FM passive radar”. EURASIP Journal on Advances in Signal Processing, 2010(1), 1-13, 2009.

Tasdelen AS, Koymen H. “Range resolution improvement in passive coherent location radar systems using multiple FM radio channels”. Waveform Diversity and Design in Communications, Radar and Sonar, The Institution of Engineering and Technology Forum, London, UK, 22 November 2006.

Grayver E. Implementing Software Defined Radio. 1st ed. New York, USA, Springer, 2012.

Ettus Research. “USRP N210 datasheet”. https://www.ettus.com/content/files/07495_Ettus_N200-210_DS_Flyer_HR_1.pdf (12.05.2018).

GNURadio. “GNU Radio Manual and C++ API Reference Documentation”. https://gnuradio.org/doc/doxygen/index.html (12.05.2018).

Malanowski M, Kulpa K, Kulpa J, Samczynski P, Misiurewicz J. “Analysis of detection range of FM-based passive radar”. IET Radar, Sonar & Navigation, 8(2), 153-159, 2014.

O'Hagan DW, Baker CJ. “Passive bistatic radar (PBR) using FM radio illuminators of opportunity”. New Trends for Environmental Monitoring Using Passive Systems, Hyeres, France, 14-17 October 2008.

Tuysuz B. “Development of semi-real time multi-frequency band supported passive radar system for aerial target detection”. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1), 191-199, 2019.

Griffiths HD, Baker CJ, Ghaleb H, Ramakrishnan R, Willman E. “Measurement and analysis of ambiguity functions of off-air signals for passive coherent location”. Electronics Letters, 39(13), 1005-1007, 2003.

Stein S. “Algorithms for ambiguity function processing”. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(3), 588-599, 1981.

Edelson RA, Krolik JH. “The discrete correlation function-A new method for analyzing unevenly sampled variability data”. The Astrophysical Journal, 333, 646-659, 1988.

Gomez-del-Hoyo P, Barcena-Humanes JL, del-Rey-Maestre N, Rosado-Sanz J, Jarabo-Amores MP. “Study of the ghost target phenomenon on a real DVB-T passive radar scenario”. Signal Processing Symposium (SPSympo), Debe, Poland, 12-14 September 2017.