Fotonik Kristal Temelli Sıcaklık Algılayıcısının Duyarlılığının İyileştirilmesi

Üçgen örgülü GaAs fotonik kristal yapısı kullanılarak sayısal ortamda bir sıcaklık algılayıcısı önerilmiş ve algılayıcının duyarlılığı kavite çevresinde yapısal değişimler yapılarak ve yavaş ışık özelliği kullanılarak iyileştirilmiştir. Fotonik kristal dalga kılavuzunun bir sıra ilerisinde bir noktasal kusur oluşturularak kavite rezonans frekanslarındaki ışık bu noktasal boşluğa bağlaştırılmış ve sıcaklığa bağlı olarak rezonans frekansın değişimi incelenmiştir. Duyarlılığın artırılması için kavitenin yanlarındaki deliklerin yarıçapı ve kavite alanı değiştirilmiştir. 0.1001 nm/ºC olan sıcaklık algılayıcısının duyarlılığı yapısal iyileştirmeler ile 1.4%±0.1% artırılmıştır. Dalga kılavuzu çevresindeki ilk sıra deliklerin yarıçapı değiştirilerek ve dalga kılavuzuna paralel doğrultuda kaydırılarak kavite rezonans dalga boyunu da içeren 20.23 nm'lik aralıkta ışık 14 kat yavaşlatılmıştır. Yavaş ışık etkisi ile kipin kavite ile daha fazla optiksel olarak örtüşmesi sonucu algılayıcının duyarlılığı %2.8±%0.1 artmıştır.

Enhancement of Sensitivity of Photonic Crystal Based Temperature Sensor

A temperature sensor is proposed in the computational environment using triangular lattice GaAs photonic crystal structure and the sensitivity of the sensor is enhanced by employing structural improvements around the cavity and by using slow light feature. By creating a point defect one row ahead from the photonic crystal waveguide, light in the cavity resonance frequencies is coupled to this point defect and the change of the resonance frequency related to the temperature is investigated. The radius of the holes around the cavity and the cavity area are changed to enhance the sensitivity. 0.1001 nm/ºC sensitivity of the temperature sensor is increased by 1.4%±0.1% with structural optimizations. Light is slowed down by 14 times in a 20.23 nm range including the cavity resonance wavelength by changing the radius of the first rows of holes surrounding the waveguide and shifting them in a direction parallel to the waveguide. The sensitivity of the sensor is increased by 2.8%±0.1% as a result of increasing optical overlap of the mode with the cavity by slow light effect.

___

  • Nair V, Vijaya R. "Photonic Crystal Sensors: An Overview". Progress in Quantum Electronics, 34(3), 89–134, 2010.
  • Gu L, Jiang W, Chen X, Chen Ray T. "Thermooptically Tuned Photonic Crystal Waveguide Silicon-On-Insulator Mach–Zehnder Technology Letters, 19(5), 342-344, 2007. IEEE Photonics
  • Joannoupoulos JD, Johnson SG, Winn JN, Meade RD. Photonic Crystals: Molding the Flow of Light. 2nd ed. New Jersey, USA, Princeton University Press, 2008.
  • Monifi F, Djavid M, Ghafari A, Abrishamian MS. "Design of Efficient Photonic Crystal Bend and Power Splitter Using Super Defects". Journal of Optical Society of America B, 25(11), 1805-1810, 2008.
  • Boscolo S, Midrio M, Krauss TF. "Y Junctions in Photonic Crystal Channel Waveguides: High Transmission and Impedance Matching". Optics Letters, 27(12), 1001-1003, 2002.
  • David M, Ghaffari A, Monifi F, Abrishamian MS. "T-Shaped Channel Drop Filters Using Photonic Crystal Ring Resonators". Physica E, 40(10), 3151-3154, 2008.
  • Wang CC, Chen LW. "Channel Drop Filters With Folded Directional Couplers in Two-Dimensional Photonic Crystals". Physica B, 405(4), 1210-1215, 2010.
  • Manzacca G, Paciotti D, Marchese A, Moreolo MS, Cincotti G. "2D Photonic Crystal Cavity-Based WDM Multiplexer". Photonics Applications, 5(4), 164-170, 2007. and
  • Tekeste MY, Yarrison-Rice JM. "High Efficiency Photonic Crystal Based Wavelength Demultiplexer". Optics Express, 14(17) 7931-7942, 2006.
  • Altug H, Englund D, Vuckovic J. "Ultrafast Photonic Crystal Nanocavity Laser". Nature Physics, 2, 484-488, 2006.
  • Kumar A, Kumar V, Suthar B, Bhargava A. "Wide Range