Farklı malzemelere sahip hibrid kompozitlerde çatlağın mekanik davranışlara etkisinin analizi

Metallere göre hafif ve yüksek yorulma dayanımı, darbe dayanımı ve özgül mukavemet özelliklerinden dolayı kompozit malzemelerin, başta havacılık sektörü olmak üzere endüstride giderek kullanım alanı genişlemektedir. Kompozit malzemeler arasından yaygın olarak kullanılan fiber takviyeli kompozitlerde, en önemli kritik faktör, yükü taşıyan ve ana yapıya dağıtan fiber ile ana malzeme arasında çatlak oluşumu ve bu çatlağın yükler neticesinde ilerleyerek yapının dayanımını düşürmesidir. Bu çalışmada, farklı fiber açılarına sahip tabakalı hibrid kompozit malzeme içerisinde farklı alanlara yerleştirilmiş çatlağın mekanik davranışlara etkisi sonlu elemanlar analizi ile belirlenmeye çalışılmıştır. Analizlerde, toplam 1.5 mm kalınlığa sahip üç tabakalı ve farklı açılarda (0°, 15°, 30°, 45°, 60°, 75° ve 90°) yönlendirilmiş ve cam-epoksi, bor-epoksi, karbon-epoksi, cam-bor-karbon-epoksi fiber takviyeli alüminyum tabakalı kompozit yapı içerisine,  kenarda ve ortada olmak üzere farklı açılara (0° ve 30°) sahip çatlaklar oluşturulmuş ve çekme yükü uygulanmıştır. Yapılan sonlu elemanlar analizi ile çatlaklı hibrid kompozitte meydana gelen gerilme ve yer değiştirme değerleri elde edilmiştir. Elde edilen sonuçlara göre, fiber oryantasyonunun uygulanan yüke (yük x eksenine 90°) paralel duruma yaklaşması ile üst ve alt alüminyum plakada oluşan gerilmelerde düşüş görülmüştür. Ayrıca, çatlak açısının artmasıyla kayma gerilmelerinde artış görülmüştür.

Analyzing the effect of crack in different hybrid composite materials on mechanical behaviors

The using areas of composite materials in mainly aerospace sector and other industry have been increased due to their more light, high fatigue strength, impact strength and specific strength properties than metals. The critical factor in fiber reinforced laminate composites from composite materials is to crack formation on interface matrix structure and fibers carrying loads and distributing forces to matrix structure.  Also, the cracks on interface matrix structure and fibers cause decreasing the composite structure strength with crack propagations under loads. In this study, the effect of location and angle of the crack in the laminate hybrid composite material reinforced with glass-epoxy, boron-epoxy, carbon-epoxy, glass-boron-carbon-epoxy fibers at different angles on mechanical behaviors is determined with finite element analyses. In analyses, the different located crack and crack angles (0° and 30°) inside the laminate composite structure with different fiber materials reinforced at different angles (0°, 15°, 30°, 45°, 60°, 75° and 90°) with 1.5 mm of total composite thickness were formed and applied tensile forces. Afterwards, stress and displacement values were obtained in the cracked fiber reinforced structures. According to results, Decrease in stress at top and bottom aluminium plate was observed in case of parallel fiber orientation to the applied forces. Beside, shear stresses increase with increasing the crack angle.

___

  • Bernhardt S, Ramulu M, Kobayashi AS. “Low-velocity impact response characterization of a hybrid titanium composite laminate”. Journal of Engineering Materials and Technology, 129(2), 220-226, 2006.
  • Villanueva GR, Cantwell WJ. “The high velocity impact response of composite and fml reinforced sandwich structures”. Composites Science and Technology, 64(1), 35-54, 2004.
  • Beumler T, Pellenkoft F, Tillich A, Wohlers W, Smart C. “Airbus costumer benefit from fiber metal laminates”. Airbus Deutschland GmbH, 1, 1-18, 2006.
  • Faye S. “The Use of Composites in Aerospace: Past, Present and Future Challanges”. https://avaloncsl.com/resources2/presentations (14.02.2017).
  • Arıcasoy O. Kompozit Sektör Raporu. İstanbul, Türkiye, İstanbul Ticaret Odası Yayını, 2006.
  • Camphell FC. Structural Composite Materials. Introduction to Composite Materials. 1st ed. Ohio, USA, ASM International Handbook, 2010.
  • Li DH. “Three-dimensional analysis of transverse crack fiber bridging in laminated composite plates”. Composite Structures, 164, 277-290, 2017.
  • Asundi A, Choi YN. “Fiber metal laminates: an advanced material for future aircraft”. Journal of Materials Processing Technology, 94, 63-384, 1997.
  • Sinmazçelik T, Avcu E, Bora MÖ, Çoban O. “A review: Fibre metal laminates, background, bonding types and applied test methods”. Materials and Design, 32, 3671-3685, 2011.
  • Sun CT, Dicken A, Wut HF. “Characterization of impact damage in arall laminates”. Composites Science and Technology, 49(2), 139-144, 1993.
  • Remmers JJC, Borst RD. “Delamination buckling of fibre–metal laminates”. Composites Science and Technology, 61(15), 2207-2213, 2001.
  • Yılmaz D. “Katmanlı İmalat Teknolojileri ve Havacılık Uygulamaları”. Sektör Değerlendirme Raporu, Ankara, Türkiye, STM, 2015.
  • Turan K, Kaman MO, Gür M. “Pim bağlantılı tabakalı kompozit levhalarda fiber takviye açısının hasar tipine etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16 (2), 213-220, 2010.
  • Schut J, Alderliesten RC. “Delamination growth rate at low and elevated temperatures in glare”. ICAS 2006 International Congress of the Aeronautical Sciences, Hamburg, Germany, 3-8 September 2006.
  • Lin CT, Kao PW, Yang FS. “Fatigue behaviour of carbon fibre-reinforced aluminium laminates”. Composites, 22(2), 135-141, 1991.
  • Yazıcı M, Ülkü S. “İki boyutlu rastgele dağılı e-cam lifi/polyester matris kompozitlerde yükleme hızının mukavemet üzerine etkisinin incelenmesi”. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 8(1), 53-57, 2003.
  • Mouritz AP, Gallagher J, Goodwin AA. “Flexural strength and interlaminar shear strength of stitched grp laminates following repeated impacts”. Composites Science and Technology, 57(5), 509-522. 1997.
  • Wyrick DA, Adams DF. “Damage sustained by a carbon/epoxy composite material subjected to repeated impact”. Composites, 19(1), 19-27, 1988.
  • Dhaliwal GS, Newaz GM. “Compression after impact characteristics of carbon fiber reinforced aluminum laminates”. Composite Structures, 160, 1212-1224, 2017.
  • Yeh PC, Chang PY, Wang J, Yang JM, Peter HW, Liu MC. “Bearing strength of commingled boron/glass fiber reinforced aluminum laminates”. Composite Structures, 94(11), 3160-3173, 2012.
  • Swaminathan R, Prabahar KN, Abuthahir SM, Sidharth V. “Design and analyze the characteristics of hybrid fibre metal laminate”. International Journal of Innovative Research in Science, Engineering and Technology, 5(5), 7932-7938, 2016.
  • Chang PY, Yeh PC, Yang JM. “Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates”. Materials Science and Engineering A, 496(1/2), 273-280, 2008.
  • Newman JC, Philips EP, Swain HM. “Fatigue-life prediction methodology using small-crack theory”. International Journal of Fatigue, 21, 109-119, 1999.
  • Homan JJ. “Fatigue initiation in fibre metal laminates”. International Journal of Fatigue, 28(4), 366-374, 2006.
  • Karakaş O. “Application of Neuber's effective stress method for the evaluation of the fatigue behaviour of magnesium welds”. International Journal of Fatigue, 101, 115-126, 2017.
  • Kaw AK. Mechanics of Composite Materials. 2nd ed. USA, Taylor and Francis, 2006.
  • Jung H, Kim Y. “Mode I fracture toughness of carbon-glass/epoxy interply hybrid composites”. Journal of Mechanical Science and Technology, 29(5), 1955-1962, 2015.
  • Jose S, Kuma RK, Jana MK, Rao GV. “Intralaminar fracture toughness of a cross-ply laminate and its constituent sub-laminates”. Composites Science and Technology, 61(8), 1115-1122, 2001.
  • Garg AC. “Intralaminar and interlaminar fracture in graphite/epoxy laminate”. Engineering Fracture Mechanics, 23(4), 719-733, 1986.
  • American Society for Testing and Materials,”Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”, Annual Book of ASTM Standards, Pennsylvania, United States, ASTM E399-90, 03(01), 407–528, 1993.
  • Erdoğan F, Wu B. “Interface crack problem in layared orthotropic material”. Journal of the Mechanics and Physics of Solid, 41(5), 889-917, 1993.
  • Jin JH, Batra RC. “Residual stress of centrally cracked metal/fiber composite laminates”. Materials Science and Engineering A, 216, 117-124, 1996.
  • Macheret J, Bucci RJ, Kulak M. "Metal plasticity and specimen size effect in evaluation of ARALL laminates notched panel residual strenght, in fracture behavior and design of materials structures”. 8th European Conference on Fracture, Torino, Italy, 1th-5th of October, 1990.
  • Macheret J, Bucci RJ. “A crack growth resistance curve approache to fiber/metal laminate fracture touhness evaluations”. Engineering Fracture Mechanics, 45, 729-739, 1992.
  • Chang PY, Yeh PC, Yang JM. “Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates”. Materials Science and Engineering A, 496, 273-275, 2008.
  • Crpmeccanica. ”Machining Materials, Aluminium”. http://www.crpmeccanica.com/PDF/aluminium-2024-t4-2024-t351.pdf (15.02.2017).
  • Yeung KKH, Rao KP. “Mechanical properties of boron and kevlar-49 reinforced thermosetting composites and economic implications”. Journal of Engineering Science, 10, 19-29, 2014.
  • BotelhoI EC, Silva RA, Pardini LC, Rezende MC. “A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures”. Materials Research, 9(3), 247-256, 2006.
  • Joyce P. “Raw Materials”. https://www.usna.edu/Users/mecheng/pjoyce/composites/Short_Course_2003/2_PAX_Short_Course_Fibers.pdf (16.02.2017).
  • Khedmati MR, Sangtabi MR, Fakoori M. “Stacking sequence optimisation of composite panels subjected to slamming impact loads using a genetic algorithm”. Latin American Journal of Solids and Structures, 10(5), 1043-1060, 2013.
  • Saleh NAH. “Influence of crack parameters and loading direction on buckling behavior of cracked plates under compression”. Basrah Journal for Engineering Science, 11(1), 1-15, 2011.
  • Jweeg MJ, Hammood AS, Al-Waily M. “Analytical solution to oblique crack effect for difference composite material plates”. Journal of Science and Technology, 2(8), 697-716, 2015.
  • Tian W, Qui L, Zhou J, Guan J. “Effects of the fiber orientation and fiber aspect ratio on the tensile strength of Csf/Mg composites”. Computational Materials Science, 89, 6–11, 2014.
  • Sharma M, Rao IM, Bijwe J. “Influence of fiber orientation on abrasive wear of unidirectionally reinforced carbon fiber-polyetherimide composites”. Tribology International, 43, 959-964, 2010.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ