Bilişim Endüstrisinde Adaptasyon ve Ürün Başarısı: Çok Katmanlı Bir Çalışma

Çevresel unsurların dalgalanmasını, belirsizleşmesini, karmaşıklaşmasını ve muğlaklaşmasını içeren VUCA etkisi (çevresel unsurlar), günümüz işletmelerinin böylesi çevresel unsurlaradurumlara/şartlara uyarlanmalarını gerektirmektedir. Bu gerekliliğin bir yansıması yönetim ve örgütleme literatüründe işletmelerin örgütsel adaptasyon becerisi geliştirmelerine ve kullanmalarına verilen önemdir. Bir işletmenin örgütsel adaptasyon becerisi geliştirmesi ve kullanması ise o işletme iş görenlerinin çevresel unsurların etkisinin yarattığı yeni çevresel durumlara ne ölçüde uyumlu davranışlar sergilediklerine yakından bağlıdır. Fakat ilgili literatürdeki geçmiş araştırmalarda bu ilişki henüz derinlemesine araştırılmamıştır. Bu çalışma, öncelikle, bir işletme işgörenlerinin bireysel adaptasyon performanslarının o işletmenin örgütsel adaptasyon becerisi geliştirmesine olan muhtemel etkisini belirginleştirme amacındadır. Nihayetinde ise o işletme tarafından üretilen bir ürünün pazar başarısının örgütsel adaptasyon becerisinden nasıl etkilendiğinin netleştirilmesi hedeflenmektedir. Bu amaçla, 138 bilişim işletmesi iş göreninden elde edilen verilerin-yapısal eşitlik modeli tabanlı kısmi En Küçük Kareler (PLS) metodu kullanmak suretiyle-analizi sonucunda ulaşılan bulgular özetle şu şekildedir; (i) bir işletmenin iş görenlerinin bireysel adaptasyon performansları o işletmelerin örgütsel adaptasyon becerisi geliştirmelerine ve uygulamalarına ve (ii) bir işletmenin örgütsel adaptasyon becerisinin o işletmenin geliştirdiği bir ürünün pazar başarısına olan etkisi anlamlı ve pozitiftir. Çalışma içerisinde kuramsal ve yönetsel sonuçlar tartışılmaktadır.
Anahtar Kelimeler:

xx

Adaptation and Product Success in Information Services Industry: A MultiLevel Study

Under the VUCA (Volatile, Uncertain, Complex, and Ambiguous) influence, firms have to rapidly adapt this kind of environmental situations. In this context, the management as well as organization literature generally argue that firms should generate and utilize organizational adaptive capability. Developing and using organizational adaptive capability is closely related to the organizational members’ adaptive behaviors in the environmental conditions. However, in the relevant literature, this relationship has not been investigated thoroughly yet. This study attempts to crystallize the potential effects of individual adaptive performance on organizational adaptive capability. In addition, this study aims to demonstrate the probable influence of organizational adaptive capability on product success. To this end, based on the analyses conducted on the sample from 138 organizational members, who work in Information Technology (IT) industry, ―by using structural equation model based on partial least squares (PLS) method―, this study found that (i) there is a positive and significant relationship between individual adaptive performance and organizational adaptive capability and (ii) between organizational adaptive capability and product success. Theoretical and managerial implications of the study were discussed.

Kaynakça

Açıkgöz, A., Günsel, A., Bayyurt, N., & Kuzey, C. (2014). Team climate, team cognition, team intuition, and software quality: The moderating role of project complexity. Group Decision and Negotiation, 23, 1145-1176.

Akgün, A. E., Keskin, H., & Byrne, J. (2012). Antecedents and contingent effects of organizational adaptive capability on firm product innovativeness. Journal of Product Innovation Management, 29, 171-189.

Akgün, A. E., Keskin, H., & Byrne, J. (2014). Complex adaptive systems theory and firm product innovativeness. Journal of Engineering and Technology Management, 31, 21-42.

Allworth, E. & Hesketh, B. (1999). Construct-oriented biodata: Capturing change-related and contextually relevant future performance. International Journal of Selection & Assessment, 7, 97-111.

Argyris, C. & Schön, D. A. (1978). Organizational learning: A theory of action perspective. Reading, Mass: Addison Wesley.

Basadur, M., Gelade, G., & Basadur, T. (2014). Creative problem-solving process styles, cognitive work demands, and organizational adaptability. Journal of Applied Behavioral Science, 50, 80-115.

Bennett, N. & Lemoine, G.J. (2014). What VUCA really means for you. Harvard Business Review, January– February. Erişim Linki: https://hbr.org/2014/01/what-vuca-really-meansfor-you.

Borch, O. J. & Arthur, M. B. (1995). Strategic networks among small firms: Implications for strategy research methodology. Journal of Management Studies, 32, 419-441.

Burns, T. & Stalker, G. M. (1961). The management of innovation London: Tavistock.

Charbonnier-Voirin, A., El Akremi, A., & Vandenberghe, C. (2010). A multilevel model of transformational leadership and adaptive performance and the moderating role of climate for innovation. Group & Organization Management, 35, 699-726.

Charbonnier-Voirin, A. & Roussel, P. (2012). Adaptive performance: a new scale to measure individual performance in organizations. Canadian Journal of Administrative Sciences, 29, 280-293.

Chin, W. W. (1998). The partial least squares approach for structural equation modeling. Mahwah, NJ: Lawrence Erlbaum Associates.

Churchill, Jr. G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16, 64-73.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Earlbaum Associates.

Cooper, R. G. & Kleinschmidt, E. J. (1987). Success factors in product innovation. Industrial Marketing Management, 16, 215-223.

D’aveni, R. A. (1994). Hypercompetition: Managing the dynamics of strategic maneuvering. The Free Press, New York, With R Gunther.

Diamantopoulos, A. & Winklhofer, H. M. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38, 269-277.

Fornell, C. & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39-50.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American Statistical Association, 70, 320-328.

Graziano, A. M. & Raulin, M. L. (1997). Research methods: A process of inquiry. Addison-Wesley, New York.

Griffin, B. & Hesketh, B. (2003). Adaptable behaviours for successful work and career adjustment. Australian Journal of Psychology, 55, 65-73.

Günsel, A. & Açıkgöz, A. (2013). The effects of team flexibility and emotional intelligence on software development performance. Group Decision and Negotiation, 22, 359-377.

Hair, Jr. J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2008). Multivariate data analysis. New Jersey: Pearson Education.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2013). A primer on partial least squares structural equation modeling (PLS-SEM). Sage, Thousand Oaks.

Han, T. Y. & Williams, K. J. (2008). Multilevel investigation of adaptive performance individualand team-level relationships. Group & Organization Management, 33, 657-684.

Hansen, P. A. & Serin, G. (1997). Will low technology products disappear? The hidden innovation processes in low technology industries. Technological Forecasting and Social Change, 55, 179-191.

Huber, G. P. & Power, D. J. (1985). Retrospective reports of strategic-level managers: Guidelines for increasing their accuracy. Strategic Management Journal, 6, 171-180.

Karaeminoğulları, A., Doğan, A., & Bozkurt, S. (2009). Kültürlerarası adaptasyon envanteri üzerine bir araştırma. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14, 331-349.

Kelley, D. (2009). Adaptation and organizational connectedness in corporate radical innovation programs. Journal of Product Innovation Management, 26, 487-501.

Kumar, N., Stern, L.W. & Anderson, J. C. (1993). Conducting interorganizational research using key informants. Academy of Management Journal, 36, 1633-1651.

Laranja, M. & Fontes, M. (1998). Creative adaptation: The role of new technology based firms in Portugal. Research Policy, 26, 1023-1036.

Lawrence, P. R. & Lorsch, J. W. (1967). Organization and environment. Boston: Harvard University Press.

Meeus, M., Leon, T. H., & Oerlemans, A. G. (2000). Firm behaviour and innovative performance: an empirical exploration of the selection–adaptation debate. Research Policy, 29, 41-58.

Moon, H., Hollenbeck, J. R., Humphrey, S. E., Ilgen, D. R., West, B., Ellis, A. P. J., & Porter, C. O. L. H. (2004). Asymmetric adaptability: Dynamic team structures as one-way streets. Academy of Management Journal, 47, 681-695.

Nunnally, J. C. (1978). Psychometric theory. New York: McGraw-Hill.

Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems research. MIS Quarterly, 31, 623-656.

Podsakoff, P. M. & Organ, D.W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12, 531-544.

Podsakoff, P. M., MacKenzie, S. B., Lee, J-Y., & Podsakoff, N. P. (2003). Common method bias in behavioral research: A critical review of the literature and recommended remedies. Journal Applied Psychology, 88, 879-903.

Porter, C. O. L. H., Webb, J. W. & Gogus, C. I. (2010). When goal orientations collide: Effects of learning and performance orientation on team adaptability in response to workload imbalance. Journal of Applied Psychology, 95, 935-943.

Pulakos, E. D., Arad, S., Donovan, M. A. & Plamondon, K. E. (2000). Adaptability in the Workplace: Development of a taxonomy of adaptive performance. Journal of Applied Psychology, 85, 612-624.

Pulakos, E.D. & Schmitt, N. (2002). Predicting adaptive performance: Further tests of a model of adaptability. Human Performance, 15, 299-323.

Raudenbush, S., Bryk, A. & Congdon, R. (2005). HLM: Hierarchical linear and nonlinear modeling. Lincolnwood, IL: Scientific Software International Inc.

Reinartz, W., Krafft, M., & Hoyer, W. D. (2003). Measuring the customer relationship management construct and linking it to performance outcomes. INSEAD Working Paper Series, 2003/02/MKT, 151.

Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage.

Ringle, C.M., Wende, S., & Will, A. (2005). SmartPLS Version 2.0. Universität Hamburg, Hamburg.

Segars, A. (1997). Assessing the unidimensionality of measurement: a paradigm and illustration within the context of information systems research. Omega, 25, 107-121.

Sellin, N. & Versand, O. (1989). Partial least square modeling in research on educational achievement, in W. Bos and R. H. Lehmann (Eds.), Reflections on educational achievement, Papers in Honour of T. Neville Postlethwaite, New York: Waxmann Munster, pp. 256-267.

Schrub, E. M., Stegmaier, R., & Sonntag, K. (2011). The effect of change on adaptive performance: does expressive suppression moderate the indirect effect of strain? Journal of Change Management, 11, 2144.

Shoss, M. K., Witt, L. A., & Vera, D. (2012). When does adaptive performance lead to higher task performance? Journal of Organizational Behavior, 33, 910-924.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society Series B (Methodological), 36, 111-147.

Tuominen, M., Rajala, A., & Möller, C. (2004). How does adaptability drive firm innovativeness? Journal of Business Research, 57, 495-506.

Wold, H. (1982). Soft modeling. The basic design and some extensions. In Jöreskog, K.G., Wold, H., (Eds.), Systems under indirect observation. Causality, structure, prediction. Part I, 1-54. NorthHolland: Amsterdam.

Woltman, H., Feldstain, A., MacKay, J. C., & Rocchi, M. (2012). An introduction to hierarchical linear modeling. Tutorials in Quantitative Methods for Psychology, 8, 52-69.