TAURIN KIRIK İYİLEŞMESİNİ ETKİLER Mİ? DENEYSEL BİR ÇALIŞMA

DOI: 10.26650/IUITFD.394531Amaç: Yapısal olmayan bir amino asit olan antioksidan etkili taurinin kırık iyileşmesi üzerine etkilerinin araştırılmasıGereç ve Yöntem: Kontrol grubunda dokuz, taurin grubunda yedi tane Yeni Zelanda tipi tavşana açık tibial osteotomi uygulandı. Radyolojik kırık iyileşmesi, 21. günde çekilen direk grafi ve bilgisayarlı tomografi (BT) kesitleri üzerinde Goldberg skoru ile değerlendirildi. Histoloik olarak iyileşme Huo skoruna göre derecelendirildi. Sıfırıncı, yedinci, 14. ve 21. günlerde serumda malondialdehit (MDA) ve alkalen fosfataz (ALP) düzeyleri ölçüldü.   Bulgular: Direk grafi ve BT kesitlerine göre kırık iyileşmesinin ortanca evresi taurin grubunda radyolojik kaynamayken kontrol grubunda olası kaynama olarak bulundu. Histolojik olarak, kallus taurin grubunda esas olarak kemik dokusundan oluşurken (ortanca Huo skoru 8), kontrol grubunda baskın doku kıkırdaktı (ortanca Huo skoru 6). MDA düzeyindeki değişimler oksidatif stresin kırık iyileşmesinin enflamatuvar fazında en yüksek olduğunu göstermekteydi. Her iki grupta da ALP düzeyleri önce azalmış, 21. Günde yeni kemik oluşumuyla yeniden yükselmiş olarak bulundu. Sonuç:  Bu çalışmanın sonuçları deneysel osteotomi modelinde taurinin erken evre kırık iyileşmesi üzerinde olumlu etkileri olduğunu desteklemektedir. Bu etki tarunin antioksidan özelliği ile ilişkilendirilebilir.  

DOES TAURINE IMPROVE FRACTURE HEALING? AN EXPERIMENTAL STUDY

DOI: 10.26650/IUITFD.394531Objective: To evaluate the influence of taurine, a non-structural amino acid with antioxidant effects, on fracture healing.Materials and Methods: Open tibial osteotomy was performed on nine New Zealand rabbits in the control group and seven in the taurine group. Radiologic fracture healing was assesed using the Goldberg score on x-rays and computed tomography (CT) sections on the 21st day. Healing was graded histologically using the Huo score. Serum malondialdehyde (MDA) and alkaline phosphatase (ALP) levels were measured, at days zero, seven, 14 and 21. Results: Upon completion of the study, in the taurine group, the median stage of healing was recorded as “radiologic union”, whereas it was “probable union” in the control group with respect to x-ray and CT sections. In the taurine group, callus was mainly composed of osteoid tissue (median Huo score 8); in the control group the predominant tissue was chondroid (median Huo score 6). Changes in MDA levels revealed that oxidative stress was greatest in the inflammatory phase. In both groups, the ALP levels first decreased, and then increased ,with new bone formation on the 21st day. Conclusion: Taurine improved early bone healing in an experimental animal osteotomy model. This influence might be related to its antioxidant properties.

___

  • 1. Ashhurst DE. The influence of mechanical conditions on the healing of experimental fractures in the rabbit: a microscopical study. Philos Trans R Soc Lond B Biol Sci 1986;313(1161):271 - 302.
  • 2. Bellaiche N. Imaging in oral implantology. In: Scortecchi GM, Misch CE, Benner KU (eds). Implants and Restorative Dentistry. London, England: Martin Dunitz Ltd, 2001;181.
  • 3. Bouckenooghe T, Remacle C, Reusens B. Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care 2006;9(6):728-33.
  • 4. Buckwalter JA. Musculoskeletal tissue healing. In: Weinstein SL, Buckwalter JA (eds). Turek’s Orthopaedics, Principles and Their Applications, 6th ed. Philadelphia, Pennsylvania, USA: Lippincott Williams & Wilkins, 2005;57-63.
  • 5. Cetinus E, Kilinc M, Uzel M, et al. Does long-term ischemia affect the oxidant status during fracture healing? Arch Orthop Trauma Surg 2005;125(6):376-80.
  • 6. Demers LM. Bone specific alkaline phosphatase. In: Eastell R, Baumann M, Hoyle NR, Wieczorek L (eds). Bone Markers Biochemical and Clinical Perspectives, London, England: Martin Dunitz Ltd, 2001;57-8.
  • 7. Durak K, Sönmez G, Sarisozen B, Özkan S, Kaya M, Öztürk C. Histological assessment of the effect of alpha-tocopherol on fracture healing in rabbits. J Int Med Res 2003;31(1):26-30.
  • 8. Duygulu F, Yakan B, Karaoğlu S, Kutlubay R, Karahan OI, Özturk A. The effect of zymosan and the protective effect of various antioxidants on fracture healing in rats. Arch Orthop Trauma Surg 2007;127(7):493-501.
  • 9. Frost HM. The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop Relat Res 1989;248:283-93.
  • 10. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 1990;85(3):632-9.
  • 11. Göktürk E, Turgut A, Baycu C, Günal I, Seber S, Gülbaş Z. Oxygen free radicals impair fracture healing in rats. Acta Orthop Scand 1995;66(5):473-5.
  • 12. Goldberg VM, Powell A, Shaffer JW, Zika J, Bos GD, Heiple KG. Bone grafting: role of histocompatibility in transplantation. J Orthop Res 1985;3(4):389-404.
  • 13. Halıcı M, Öner M, Güney A, Canöz Ö, Narin F, Halıcı C. Melatonin promotes fracture healing in the rat model. Eklem Hastalik Cerrahisi 2010;21(3):172-7.
  • 14. Huo MH, Troiano NW, Pelker RR, Gundberg CM, Friedlaender GE. The influence of ibuprofen on fracture repair: biomechanical, biochemical, histologic, and histomorphometric parameters in rats. J Orthop Res 1991;9(3):383-90.
  • 15. Huxtable RJ. Physiological actions of taurine. Physiol Rev 1992;72(1):101-63.
  • 16. Kim JW, Kim C. Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated though Ras-ERK-NF-kappaB. Biochem Pharmacol 2005;70(9):1352-60.
  • 17. Lykkesfeldt J. Determination of malondialdehyde as dithiobarbituric acid adduct in biological samples by HPLC with fluorescence detection: comparison with ultraviolet-visible spectrophotometry. Clin Chem 2001;47(9):1725-7.
  • 18. Mohamad S, Shuid AN, Mohamed N, et al. The effects of alpha-tocopherol supplementation on fracture healing in a postmenopausal osteoporotic rat model. Clinics (Sao Paulo) 2012;67(9):1077-85.
  • 19. Mohamadnia AR, Shahbazkia HR, Sharifi S, Shafaei I. Bone-specificalkaline phosphatase as a good indicator of bone formation in sheepdogs. Comp Clin Pathol 2007;16(4):265-70.
  • 20. Park E, Alberti J, Quinn MR, Schuller-Levis G. Taurine chloramine inhibits the production of superoxide anion, IL-6 and IL-8 in activated human polymorphonuclear leukocytes. Adv Exp Med Biol 1998;442:177-82.
  • 21. Park S, Kim H, Kim SJ. Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells. Biochem Pharmacol 2001;62(8):1107-11.
  • 22. Petrovich YA, Podorozhnaya RP, Kichenko SM, Kozlova MV. Effects of selenium-containing compounds and their metabolism in intact rats and in animals with bone fractures. Bull Exp Biol Med 2004;137(1):74-7.
  • 23. Pincemail J. Free radicals and antioxidants in human diseases. In: Favier AE, Cadet J, Kalyanaraman B, Fontecave M, Pierre JL eds. Analysis of free radicals in biological systems, Basel, Switzerland: Birkhäuser; 1995: 83-98.
  • 24. Roysommuti S, Azuma J, Takahashi K, Schaffer S. Taurine cytoprotection: From cell to system. Thai J Physiol Sci 2003;16(2):17-27.
  • 25. Rozen N, Lewinson D, Bick T, Meretyk S, Soudry M. Role of bone regeneration and turnover modulators in control of fracture. Crit Rev Eukaryot Gene Expr 2007;17(3):197-213.
  • 26. Sarisozen B, Durak K, Dincer G, Bilgen OF. The effects of vitamins E and C on fracture healing in rats. J Int Med Res 2002;30(3):309-13.
  • 27. Schuller-Levis GB, Park E. Taurine and its chloramine: modulators of immunity. Neurochem Res 2004;29(1):117-26.
  • 28. Shuid AN, Mohamad S, Muhammad N, et al. Effects of α-tocopherol on the early phase of osteoporotic fracture healing. J Orthop Res 2011;29(11):1732-8.
  • 29. Silverton SF, Mesaros S, Markham GD, Malinski T. Osteoclast radical interactions: NADPH causes pulsatile release of NO and stimulates superoxide production. Endocrinology 1995; 136(11):5244-7.
  • 30. Sontakke AN, Tare RS. A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta 2002;318(1-2):145-8.
  • 31. Turgut A, Göktürk E, Köse N, Kaçmaz M, Oztürk HS, Seber S, et al. Oxidant status increased during fracture healing in rats. Acta Orthop Scand 1999;70(5):487-90.
  • 32. Turk C, Halici M, Guney A, Akgun H, Sahin V, Muhtaroglu S. Promotion of fracture healing by vitamin E in rats. J Int Med Res 2004;32(5):507-12.
  • 33. Volkmer DL, Sears B, Lauing KL, Nauer RK, Roper PM, Yong S, et al. Antioxidant therapy attenuates deficient bone fracture repair associated with binge alcohol exposure. J Orthop Trauma 2011;25(8):516-21.
  • 34. Wojtecka-Lukasik E, Czuprynska K, Maslinska D, Gajewski M, Gujski M, Maslinski S. Taurine-chloramine is a potent anti-inflammatory substance. Inflamm Res 2006;55 Suppl 1:S17-S18.
  • 35. Yeler H, Tahtabas F, Candan F. Investigation of oxidative stress during fracture healing in the rats. Cell Biochem Funct 2005;23(2):137-9.
  • 36. Yilmaz C, Erdemli E, Selek H, Kinik H, Arikan M, Erdemli B. The contribution of vitamin C to healing of experimental fractures. Arch Orthop Trauma Surg 2001;121(7):426-8.
  • 37. Yuan LQ, Liu W, Cui RR, Wang D, Meng JC, Xie H, et al. Taurine inhibits osteoclastogenesis through the taurine transporter. Amino Acids 2010;39(1):89-99.
  • 38. Yuan LQ, Xie H, Luo XH, Wu XP, Zhou HD, Lu Y, et al. Taurine transporter is expressed in osteoblasts. Amino Acids 2006;31(2):157-63.
  • 39. Zhou C, Zhang X, Xu L, Wu T, Cui L, Xu D. Taurine promotes human mesenchymal stem cells to differentiate into osteoblast through the ERK pathway. Amino Acids 2014;46(7):1673 - 80.
İstanbul Tıp Fakültesi Dergisi-Cover
  • Başlangıç: 1916
  • Yayıncı: İstanbul Üniversitesi Yayınevi