Seleksiyon ıslahıyla belirlenen bir iğde (Elaeagnus angustifolia L.) tipinin yeşil uç çeliklerinin köklenmesi üzerine farklı hormon ve nem seviyeleri etkisinin araştırılması

Bu çalısmada, selekte edilmiş bir iğde (Eleagnus angustifolia L.) tipinden erken Haziranda, alınan yeşil uç çeliklerinin, “Sisleme Sisteminde” iki farklı hava nispi nem ortamı (% 85-90 ve % 95- 100), Indol-3-Butirik Asit’in (IBA) uygulanan 5 farklı konsantrasyonu (0, 500, 1500, 2500ppm ve 3500ppm) ve perlit köklendirme ortamının köklenmeleri üzerine etkileri incelenmiştir. Araştırmada, dikilen çeliklerin tümünün canlı kaldığı ve yüzde yüze varan oranda köklendigi belirlenmistir. Çeliklerde kalluslanma, en yüksek % 95-100 nem seviyesindeki 500 ppm doz uygulamasından (% 12.50) elde edilmistir. Köklenme oranı kontrol grubu dahil tüm uygulamalarda % 75.00’in üzerinde gerçeklesmis olup, en yüksek köklenme % 85-90 nem seviyesindeki ortamda kontrol, 500 ppm ve 1500 ppm doz uygulamalarından (% 100) elde edilmistir. IBA dozu ve nem artıslarının köklenmeyi artırmadıgı gözlenmistir. Çeliklerde köklenme yüzey uzunlugu, en fazla % 85-90 nem seviyesinde 500 ppm doz uygulamasında (2.563cm) belirlenmistir. Kök sayısı bakımından, en yüksek deger % 85-90 nem seviyesinde, 500 ppm doz uygulamasından (18.75 adet/çelik) elde edilmistir. Çeliklerde en uzun kök % 85-90 nem seviyesindeki kontrol grubundan (6.083cm), en kısa kök ise, % 95-100 nem seviyesindeki kontrol grubundan (0.323) elde edilmistir. Kök dallanması en yüksek % 85-90 nem seviyesindeki 500 ppm doz uygulamasında (8.083 adet/çelik) bulunmustur. İncelenen köklenme özellikleri dikkate alındıgında, igde yesil uç çeliklerinin kolay köklendigi belirlenmis olup, % 85-90 nispi nem seviyesindeki, kontrol grubu (% 100), 500 ppm (% 100) ve 1500 ppm IBA doz uygulamalarından en iyi köklenme özellikleri elde edilmiştir.

A Research on the effects of some hormone and relative humidity levels on rooting of softwood top cuttings of russion olive (Elaeagnus angustifolia L.) determined by the selection of breeding

In this research, softwood top cuttings were taken from one of the selected russian olive (Elaeagnus angustifolia L.) type in early June. The softwood cuttings of the russian olive’s were rooted in pumice medium under misting system after treating with 0 (control), 500, 1500, 2500 ppm and 3500 ppm Indole-3-Butyric Acid (IBA) under 2 different humidity of 85-90 % and 95-100 %. In the research, all the cutting getting alive and rooted about 100 %. The highest ratio of cutting callus formation was found 500 ppm IBA dose (% 12.50) in % 95-100 humidity level. Rooting ratio was found up to 75.00 % including control group, the highest rooting was found from control, 500 ppm and 1500 ppm hormone doses to be 100 % in 85-90 % relative humudity. Rising of IBA dose and humidity level does not increase the rooting. The highest rooting area lenght was found 500 ppm hormone dose (2.563cm) in 85-90 %. In point of root number, the highest number was found from 500 ppm hormone level aplication (18.75 number/cutting) in % 85-90 humidity level. The longest root determined from control group (6.083cm) in 85-90 % humidity level, the shortest one determined from control group (0.323 cm) in 95-100 % humidity level. The highest root branching was found 500 ppm hormone dose (8.083 number/cutting) in 85-90 % humidity level. Taken into consideration when viewing the properties of the rooting, russion olive softwood top cutting is easy to be rooting determined, and relative humidity level of 85-90%, in the control group (100%), 500 ppm (100%) and 1500 ppm IBA doses have been obtained best practices to cutting properties.

___

Anonymous, 2007a. http://www.smssend.gen.tr/bitkiler/ig de.htm (erisim tarihi; 10.11.2008)

Anonymous, 2007b. http://www.bitkiseltedavi. com/bitki/bitki(i1).htm (erisim tarihi; 10.11.2008)

Bailey, L. H., 1914. Standard cyclopedia of horticulture. Mac Millan Co. London, UK.

Bartel, B., Le Clere, S., Magidin, M. And Zolman, B.K., 2001. Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid aˆ- oxidation. J. Plant Growth Regul. 20, 198–216.

Bellamine, J., Penel, C., Greppin, H. and Gaspar, T., 1998. Confirmation of the role of auxin and calcium in the late phase of adventitious root formation. Plant Growth Regul. 26, 191–194.

Borell, A. E., 1971. Russian-olive for wildlife and other conservation uses. Leaflet 292. US Department of Agriculture, Washington, DC.

Brothers, T. S., 1984. Historical vegetation change in the Owens River riparian woodland. In: Warner, Richard E.; Hendrix, Kathleen M., eds. California riparian systems: Ecology, conservation, and productive management: Proceedings of the conference; 1981 September 17-19; Davis, CA. Berkeley, CA: University of California Press: 75-84.

Carrol, R. B., Morehart, A.L. and Stuart, M., 1976. Phomopsis canker of Russian-olive in Delaware. Plant Dis. Rep. 60:787-788

Chrisitiansen, E. M., 1963. Naturalization of Russian olive (Elaeagnus angustifolia L.) in Utah. Am. Midland Nat. 70:133-137.

Davis, T. D., Haissig, B.E. and Sankhla, N., 1989. Adventitious root formation in cuttings. Advances in Plant Sciences Series, vol. 2. Dioscorides Press, Portland, Oregon, USA.

De Klerk, G.-J., Van Der Krieken, W. and De Jong, J.C., 1999. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant 35, 189–199.

Dick, J. M. and Leake, R. R. B., 2006. Differentiation of the dynamic variables affecting rooting ability in juvenile and mature cuttings of cherry (Prunus avium). Journal of Hortıcultural Scıence & Bıotechnology, 81(2): 296-302.

Dmitrienko, N. G., Kovaleva, A. F., Maslova, V. A. and Senin, V. I., 1984. Effect of mineralized water on the rooting of softwood cuttings. Sadovodstvo. No: 8, 18-19.

Düzgüneş, O., Kesici, T., Kavuncu, O. ve Gürbüz, F., 1987. Arastırma ve Deneme Metotları. Ankara üniv. Ziraat Fak. Yayınları: 1021, Ders Kitabı:295, Ankara.

Elias, T. S, 1980. The complete trees of North America: Field guide and natural history. Van Nostrand Reinhold Co. New York, NY. 948 p.

Epstein, E. and Ludwig-Müller, J., 1993. Indole-3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol. Plant 88, 382– 389.

Feucht, W. and Schwalb, P., 1999. Changes in the concentration of phenolic substances in the bark during the annual development of the cherry tree (Prunus avium L.). Advances in Horticultural Science, 13: 71-

George, E. J., 1953. Tree and shrub species fort he Northern Great Plains. Circular No. 912. Washington, DC: U.S. Department of Agriculture. 46 p.

Hays, J. F. Jr., 1990. Wildlife considerations in windbreak renovation. In: Great Plains Agricultural Council, compiler. Windbreaks: Living with the wind: Proceedings, windbreak renovation workshop; 1990 October 23-25; Hutchinson, KS: Great Plains Agriculture Council Publ. No. 133. Manhattan, KS: Kansas State Universty, Cooperative Extension Service: 35-41.

Ivanicka, J. and Cvopa, J., 1977. Propagation of dogwood (Cornus mas L.) by softwood and semihardwood cuttings. Gatenbauwissenschaft, 42(4): 169- 171.

Ivanicka, J., 1988. Propagation of unusual fruit crops from softwood cuttings under Mist. Vedecke Prace Vyskumneho Ustavu Ovocych a Okrasnych Drevin v Bojniciach. 7, 163-170; 14.

Kalyoncu, İ. H., ve Ecevit, F. M., 1995. Farklı nem seviyelerinin kızılcık (Cornus mas L.) yesil çeliklerinde köklenme üzerine etkileri. Türkiye II Ulusal Bahçe Bitkileri Kongresi (3-6 Ekim 1995), Cit I (Meyve), s 273- 276. Çukurova Üniv. Ziraat Fak. Balcalı-Adana.

Kalyoncu, İ. H., 1996. Konya Yöresindeki Kızılcık (Cornus mas L.) Tiplerinin Bazı Özellikleri ve Farklı Nem Ortamlarındaki Köklenme Durumu Üzerine Bir Arastırma, Selçuk Üniv. Tarımsal Yapılar ve Sulama Anabilim Dalı, Doktora Tezi (Basılmamıs), Konya.

Kalyoncu, İ. H. ve Özer, E., 2000. Gilaburu’nun (Viburnum opulus L.) yesil yan çeliklerle köklendirilmesi ve fidan elde edilmesi. II. Ulusal Fidancılık Sempozyumu (25-29 Eylül 2000). 1.1-10, Bademli-Ödemis, İzmir.

Kalyoncu, İ. H., Babaoglu, D. ve Yılmaz, M., 2007. Gilaburu’nun (Viburnum opulus L.) yesil uç çeliklerinde çelik köklenmesi üzerine bazı hormonların etkileri. Türkiye V. Ulusal Bahçe Bitkileri Kongresi, Cilt 1: Meyvecilik, (04-07 Eylül 2007), Erzurum.

Klich, M. G., 2000. Leaf variations in Elaeagnus angustifolia related to environmental heterogenety. Environmental and Experimental Botany. 44 (3): 171-173.

Krupinsky, J. M., and Frank, A. B., 1986. Effects of water stress on Tubercularia canker Russian olive. Montana State Univ. Coop. Ext. 117: 171-172.

Ludwig-Müller, J., 2000. Indole-3-butyric acid in plant growth and development. Plant Growth Regul. 32, 219–230.

Nag, S., Saha, K. and Choudhuri, M.A., 2001. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul. 20, 182–194.

Nordström, A. C., Jacobs, F. A. and Eliasson, L., 1991. Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol. 96, 856– 861.

Özbek, S., 1971. Bag- Bahçe Bitkilerinin Islahı, Ankara Üniv. Ziraat Fak.Yay.: 419, Yardımcı Ders Kitabı: 146, Ankara, 263s.

Özbek, S; Özhan, M. ve Yılmaz, M., 1961. Çay çeliklerinin köklenmesi üzerine muhtelif hormonların tesiri. Ankara Üniversitesi Ziraat Fakültesi Yıllıgı Yıl:11, Fasikül 2.

Özdemir, G., 2007. Selçuk Üniversitesi Alaaddin Keykubat Kampus Alanında Yetisen İgdelerin (Eleaeagnus angustifolia L.) Seleksiyonu. S.Ü. Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Yüksek Lisans Tezi (Basılmamıs), s 89, Konya.

Özer, E. ve Kalyoncu, İ. H., 2007. Gilaburu (Viburnum opulus L.)’nun yesil çelikle çogaltma imkanlarının arastırılması. Selçuk Üniv. Ziraat Fak. Dergisi 21(43): 46-52. Konya.

Özgüven, A. I. ve Ak, B. E., 1993. Indol Butirik Asidin (IBA) nar çeliklerinin köklenmesi üzerine etkisi. Ç. Ü. Ziraat Fakültesi Dergisi, 8, (3):1-10. Adana. Peterson, G. W., 1976. Disease of Russianolive caused by Botryodiplodia theobromae. Plant Dis. Rep. 60:490- 494.

Read, R. A., 1964. Tree windbreaksfor the Central Gread Plains. Agric. Handb. 250. Washington, DC: U.S. Department of Agriculture, Forest Service. 68 p.

Riov, J., 1993. Endogenous and exogenous auxin conjugates in rooting of cuttings. Acta Hortic. 329, 284–288.

Shaw, D, L., 1988. The desingand use of living snow fences in North America. Agriculture, Ecosystems and Environment. 22/23: 351-362.

Spethmann, W. and Hamzah, A., 1988. Growth hormone induced root system types in cuttings of some broad leaved tree species. Acta Hortic. 226, 601–605.

Suriyapananont, V., 1990. Stem cutting of Japanese aprikot as related to growth regulators, rooting media and sesonal changes. Acta Horti., No: 274, 475- 480; 9.

Tuskan,G. A. and Laughlin, K., 1991. Windbreak species performance and management practies as reported by Montana and Nort Dakota landowners. Journal of Soil an Water Conservation. 46 (3): 225-228.

Weber, W. A., 1987. Colorado Flora: western slope. Boulder, CO: Colorado Associate University Press. 530 p.

Zhang, K. C.; Zhang, X. M. and Yan, G. H., 2004. Experiment of propagation of cherry rootstock by soft cutting. China Fruits, No.3, Pages: 56-57.

Zora, S., Sandhu, A. S. and Dhillon, B. S., 1986. Callusing and rooting behaviour of stem cuttings of peach (Prunus persica Batsch) cv. Sharbati in response to Indole Butyric Acid and Cyclophosphamide. Advences in Resarch on Temperate Fruits. Proceedings of the National Symposium on Temperature Fruits, 15-18 March, Himachal Pradesh Agricultural University, Solan, India. 141-146;12