Kireçli Anamateryal Üzerinde Oluşan Topraklarda Çinko Adsorpsiyonu ve Toprak Özellikleriyle İlişkileri

Çinkonun (Zn) toprak bileşenleri tarafından kuvvetli şekilde adsorpsiyonu, çözünmeyen katı fazların çökelmesi ve şelatlayıcı ajanların yetersizliği bitkilerin alabileceği formlarda bulunan Zn miktarının düşük olmasına neden olmaktadır. Ancak her bir toprak kendine özgü karakteristikler göstererek farklı mekanizmalarla topraklarda Zn yarayışlılığının düşük olmasına neden olmaktadır. Bu çalışmada farklı toprakların Zn adsorpsiyon karakteristiklerini, yarayışlı Zn içeriği düşük olan toprak örneklerinin yapılacak gübrelemeye olan tepkilerini ve potansiyel kirlilik durumlarında Zn’nin hareketliliğini Langmuir ve Freundlich adsorpsiyon izotermleri ile belirlemek amaçlanmıştır. Atabey Ovası’ndan yarayışlı Zn içeriği düşük olan 24 farklı toprak örneği alınarak bu topraklarda Zn adsorpsiyonu, “batch adsorpsiyon” tekniği ile belirlenmiştir. 2 g toprak örneği ile 0, 10, 25, 50, 100, 150, 200 ve 300 mg Zn L-1 içeren 25 mL 0.01 M CaCl2 çözeltisi 20±2°C sabit sıcaklıkta 24 saat dengeye getirilmiştir. Elde edilen adsorpsiyon verilerinin izoterm modellerine uygunluğu regresyon analizleri ile test edilmiştir. Ayrıca toprakların tanımlayıcı özellikleri ile sorpsiyon parametreleri arasındaki ilişkiler Pearson korelasyonu kullanılarak incelenmiştir. Toprakların hesaplanan Langmuir adsorpsiyon maksimumlarının 1527-3448 mg kg-1 arasında değişim gösterdiği belirlenmiştir. Korelasyon analizleri toprakların maksimum adsorpsiyonunun organik madde, kireç, kil içeriğiyle ilgili özellikler, pH ve oksit minerallerinin farklı fraksiyonları ile ilişkili olduğunu ortaya koymuştur. Sonuç olarak topraklarda Zn hareketliliği, yarayışlılığı ve ilave edilen Zn nin katı-sıvı faz arasındaki dağılımı toprak özelliklerinin ortak etkisi sonucu ortaya çıktığı değerlendirilmiştir.

Zinc Adsorption and Relations with Soil Properties in Soils Forming on Calcareous Parent Material

The plant-available zinc (Zn) in soil solution remains insufficient for optimal plant growth due to the strong adsorption of zinc by the soil components, the precipitation of Zn as insoluble solid phases and the presence of inadequate chelating agents. However, each soil causes the zinc availability to be low in the soil solution by means of different mechanisms due to its own specific physicochemical characteristics. The aims of this study are: i) to determine the zinc adsorption characteristics of the experimental soils, ii) to determine the potential response of Zn-deficient soils to Zn fertilization and iii) to determine the mobility of zinc in the soils under extreme Zn loading by Langmuir and Freundlich adsorption isotherms. Zinc adsorption was determined by batch adsorption technique in 24 different Zn-deficient soil samples from Atabey Plain, Isparta, Turkey. 25 mL of 0.01 M CaCl2 solution containing 0, 10, 25, 50, 100, 150, 200, and 300 mg Zn L-1 were equilibrated with 2 g of soils at a constant temperature of 20°C for 24 h. The appropriateness of the obtained adsorption data to the isotherm Langmuir and Freundlich models were tested by regression analysis. The relationships between the descriptive properties of the soils and the sorption parameters were revealed by Pearson correlation analysis. It was determined that the Langmuir adsorption maxima of the soils ranged between 1527-3448 mg kg-1. Correlation analyses revealed that the maximum adsorption of soils is associated with organic matter, lime, clay content, pH, and different geochemical fractions of oxide minerals. As a result, Zn mobility, availability and solid-solution partition of added Zn in the soil can be a result of the cooperative effects of soil properties.

___

  • Akgül, M., Başayiğit, L., Uçar, Y., Mücdeci M., 2001. Atabey Ovası Toprakları. Süleyman Demirel Üniversitesi Yayınları, 15 (1), 71, Isparta.
  • Antoniadis, V., Shaheen, S.M., Tsadilas, C.D., Selim, M.H., Rinklebe, J., 2018. Zinc Sorption by Different Soils as Affected by Selective Removal of Carbonates and Hydrous Oxides. Applied Geochemistry 88: 49-58.
  • Azouzi, R., Charef, A., Hamzaoui, A.H., 2015. Assessment of Effect of pH, Temperature and Organic Matter on Zinc Mobility in a Hydromorphic Soil. Environmental Earth Sciences 74: 2967-2980.
  • Baghernejad, M., Javaheri, F., Moosavi, A.A., 2016. Adsorption Isotherms of Some Heavy Metals under Conditions of their Competitive Adsorption onto Highly Calcareous Soils of Southern Iran. Archives of Agronomy and Soil Science 62: 1462-1473.
  • Berkman, E.T. and Reise, S.P., 2012. A Conceptual Guide to Statistics Using SPSS. Sage ISO 690.
  • Chittamart, N., Inkam, J., Ketrot, D., Darunsontaya, T., 2016. Geochemical Fractionation and Adsorption Characteristics of Zinc in Thai Major Calcareous Soils.Communications in Soil Science and Plant Analysis 47: 2348-2363.
  • Courtney, R. and Mullen, G., 2008. Application of High Copper and Zinc Compost and its Effects on Soil Properties and Growth of Barley. Communications in Soil Science and Plant Analysis 39: 82–95.
  • Covelo, E.F., Alvarez, N., Couce, M.L.A., Vega, F.A., Marcet, P., 2004. Zn Adsorption by Different Fractions of Galician Soils. Journal of Colloid and Interface Science 280: 343-349.
  • Davis-Carter, J.G. and Shuman, L.M., 1993. Influence of Texture and pH of Kaolinitic Soil on Zn Fraction and Uptake by Peanuts. Soil Science Society of American Journal 55 (6): 376-384.
  • Ding, Y.Z., Song, Z.G., Feng, R.W., Guo, J.K., 2014. Interaction of Organic Acids and pH on Multi-heavy Metal Extraction from Alkaline and Acid Mine Soils. International Journal of Environmental Science and Technology 11: 33–42.
  • Ding, Y.Z., Tang, S.R., Li, Z.A., Murray, M., 2008. Effects of Low Molecule Weight Organic Acids on Cd Solubility in Paddy and Red Soils in South China. Research Journal of Chemistry and Environmental Sciences 12 (1): 7–16.
  • Durgun, B., Uygur, V., Durgun, B., Sukuşu, E., 2017. Isparta-Atabey Ovası Topraklarında Mikro Element Yarayışlılığı ile Toprak Özellikleri Arasındaki Ilişkilerin Temel Bileşen Analizi ile Belirlenmesi. Anadolu Tarım Bilimleri Dergisi/Anadolu Journal of Agricultural Sciences 32: 258-268.
  • Eyüpoğlu, B., Kurucu, N., Talaz, S., 1996. Türkiye Topraklarının Bitkiye Yarayışlı Bazı Mikro Element (Fe, Cu, Zn, Mn) Bakımından Genel Durumu. Toprak Gübre Araştırma Enstitüsü, Genel yayın no:127, Seri no: R-133, Ankara.
  • Ghiri, M.N., Rezaei, M., Sameni, A., 2012. Zinc Sorption-Desorption by Sand, Silt and Clay Fractions in Calcareous Soils of Iran. Archives of Agronomy and Soil Science 58: 945-957.
  • Hacisalihoglu, G., Hart, J.J., Wang, Y.H., Cakmak, I., Kochian, L.V., 2003. Zinc Efficiency Is Correlated with Enhanced Expression and Activity of Zinc-Requiring Enzymes in Wheat. Plant Physiolog, 131: 595-602.
  • Hossner, L.R., 1996. Dissolution for Total Elemental Analysis. In: Methods of Soil Analysis Part 3. Chemical Metods. Soil Science Society of America Journal, Series No:5, Wisconsin, USA, pp. 49-64.
  • Hussain, S., Maqsood, M., Rahmatullah, A., 2011. Zinc Release Characteristics from Calcareous Soils using Diethylenetriaminepentaacetic Acid and Other Organic Acids. Communications in Soil Science and Plant Analysis 42: 1870-1881.
  • Jalali, M. and Zinli, N.A.M., 2012. Effects of Common Ions on Zn Sorption in Some Calcareous Soils of Western Iran. Pedosphere 22 (2): 190-200.
  • Jenne, E.A., 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn Concentration in Soils and Water: The Significant Role of Hydrous Mn and Fe oxides. In: R.A. Baker (Ed.), Trace Organics in Water, Advances in Chemistry Series 73, pp. 337-387. ACS, Washington,
  • Kacar, B. 2012. Toprak Analizleri. Nobel Yayınevi, Ankara
  • Karimian, N. and Moafpouryan, G.R., 1999. Zinc Adsorption Characteristics of Selected Calcareous Soils of Iran and their Relationship with Soil Properties. Communications in Soil Science and Plant Analysis 30 (11-12): 1721-1731.
  • Kaya, B. 2018. Kireçli Anamateryal Üzerinde Oluşmuş Topraklarda Çinko Adsorbsiyonu ve Toprak Özellikleriyle İlişkisi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Toprak Bilimi ve Bitki Besleme Anabilim Dalı, Isparta.
  • Krishnasamy, R. and Mathan, K.K., 2001. Path Coefficient Analysis of Zinc and Boron Adsorption in Soils. Communications in Soil Science and Plant Analysis 32: 465-475.
  • Lindsay, W.L. and Norwell, W.A., 1978. Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Science Society of American Journal 42: 421-428.
  • Lindsay, W.L., 2001. Chemical Equilibria in Soils. The Blackburn Press, USA
  • Loeppert, R.H. and Hossner, L.R., 1984. Reaction of Fe+2 and Fe+3 with Calcite. Clay and Clay Minerals 32: 213-222.
  • Melo, B.A.G., Motta, F.L., Santana, M.H.A., 2015. Humic Acids: Structural Properties and Multiple Functionalities for Novel Technological Developments. Material Science Engineering-C 62: 967–974.
  • Nascimento, C.W.A., 2006. Organic Acids Effects on Desorption of Heavy Metals from a Contaminated Soil. Journal of Agricultural Sciences 63: 276–280.
  • Özdemir N., Ö.T.K. Durmuş., Durmuş, M., Ekberli, İ., 2016. Organik Düzenleyici Uygulamalarının Farklı pH Düzeylerine Sahip Topraklarda Yarayışlı Çinko İçeriğine Etkisi. Toprak Bilimi ve Bitki Besleme Dergisi 4 (2): 83 – 88.
  • Piri, M., Sepehra, E., Rengelb, Z., 2019. Citric Acid Decreased and Humic Acid Increased Zn Sorption in Soils. Geoderma 341: 39-45.Rasheed, A. G., Razaq, I. B. A., Al-Kaysi, S. C. S., 2017. Organic Matter Addition and Zinc Status in Calcarous Soil of Iraq. Iraqi Journal of Agricultural Sciences, 48, 71-79.
  • Reyhanitabar, A., Karimian, N., Ardalan, M., Savaghebi, G., Ghannadha, M., 2007. Comparison of Five Adsorption Isotherms for Prediction of Zinc Retention in Calcareous Soils and the Relationship of their Coefficients with Soil Characteristics. Communications in Soil Science and Plant Analysis 38: 147-158.
  • Rivero, V.C., Masedo, M.D., De la Villa, R.V., 1999. Effect of Soil Properties on Zinc Retention in Agricultural Calcareous Soils. Agrochimica 43: 46-54.
  • Shuman, L.M., 1985. Fractionation Method for Soil Microelements. Soil Science140 (1): 11-22.
  • Sims, J.L. and Patrick, Jr. W.T., 1978. The Distribution of Micronutrient Cations in Soil Under Conditions of Varying Redox Potential and pH. Soil Science Society of American Journal 42: 258-262.
  • Singh, H.G. and Takkar, P.N., 1981. Evaluation of Efficient Soil Test Methods for Zn and Their Critical Values in Salt Affected Soil for Rice. Communications in Soil Science and Plant Analysis 12 (4): 383-406.
  • Spark, K.M., Wells, J.D., Johnson, B.B., 1997. Sorption of Heavy Metals by Mineral-Humic Acid Subtrates. Australian Journal of Soil Science 35: 113,122.
  • Taghlidabad, R.H. and Sepehr, E., 2017. Heavy Metals Immobilization in Contaminated Soil by Rape-Pruning-Residue Biochar. Archives of Agronomy and Soil Science 64 (8): 1041-1052.
  • Tisdale, S.L., Nelson, W.L., Beaton, J.D., 1985. Soil Fertility and Fertilizers. 4th ed, Macmillan Publishing Company, New York.
  • Usta, S. 1995. Toprak Kimyası. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara.
  • Uygur, V., 1998. The Sorbtion/Desorption Chemistry of Zn and Calcareous Soil From Turkey . Ph.D. Thesis,The Universty of Newcastle upon Tyne, UK.
  • Uygur, V., Rimmer, D.L., 2000. Reactions of Zinc with Iron Oxide Coated Calcite Surfaces at Alkaline pH. European Journal of Soil Science 51: 511-516.
  • Vesely, T., Tlustos, P., Szakova, J., 2011. Organic Salts Enhanced Soil Risk Elements Leaching and Bioaccumulation in Pistia stratiotes. Plant and Soil Environmnet 57: 166–172.
Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1304-9984
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2006
  • Yayıncı: Isparta Uygulamalı Bilimler Üniversitesi