Daraltılmış Yuva Alanı Bombus Arılarında Koloni Dinamiklerini Nasıl Etkiler?

Bu çalışmada Bombus terrestris kolonilerinde yuva alanının daraltılmasının ana ve erkek arı üretim zamanı ve bu bireylerin sayısı gibi yaşam döngüsünü belirleyen koloni dinamiklerini nasıl etkilediği araştırılmıştır. Araştırmada diyapoz dönemini tamamlamış ve koloni oluşturmaya hazır 100 adet B. terrestris ana arısı kullanılmıştır. Sosyal fazda (ilk işçi arıların çıkışı) 10 adet işçi arı sayısına ulaşan 40 koloniden 20 tanesi yaklaşık 300 santimetrekare (en, boy, yükseklik; 16 cm, 19 cm, 5 cm), geriye kalan 20 tanesi ise yaklaşık 600 santimetrekare (en, boy, yükseklik; 23 cm, 26 cm, 14 cm) taban alanına sahip olan yetiştirme kutularına transfer edilmiş ve koloni gelişimleri yaşam döngüsü sonuna kadar takip edilmiştir. Sonuçlar daraltılmış yuva alanının kolonilerde dönüşüm noktası, rekabet noktası ve ilk ana arı üretim zamanı bakımından önemli bir farklılığa neden olmadığını göstermiştir. Ancak yuva alanının daraltılması B. terrestris kolonilerinde işçi ve erkek arı sayısını azaltırken, üretilen genç ana arı sayısını önemli düzeyde artırmıştır.

How Does the Constricted Nest Area Affect Colony Dynamics in Bumblebees?

In this experiment, it was investigated that how the constricted nest area affects the critical traits which determine the colony dynamics such as number and production time of males and gynes in Bombus terrestris. A total of 100 B. terrestris queens which diapaused and were ready to found colony were used in the study. In the social phase, while 20 of the 40 colonies that reached to 10 workers were transferred to rearing box with a floor area of about 300 square centimeters (short edge, long edge, height; 16 cm, 19 cm, 5 cm), the remaining 20 colonies were transferred to rearing box with a floor area of about 600 square centimeters (short edge, long edge, height; 23 cm, 26 cm, 14 cm). Colony developments were observed during the life cycle. Results showed that constricted nest area did not cause a significant difference in terms of switch point, competition point and first gyne production time. However, while narrower nest area decreased the number workers and males, increased the number of gynes produced in B. terrestris colonies.

___

  • Alaux C, Jaisson P, Hefetz A (2005). Reproductive decision-making in semelparous colonies of the bumblebee Bombus terrestris. Behavioral Ecology and Sociobiology, 59 (2): 270–277.
  • Alford DV (1969). A study of the hibernation of bumblebees (Hymenoptera: Bombidae) in southern England. Journal of Animal Ecology, 38: 149–170.
  • Amsalem E, Grozinger CM, Padilla M, Hefetz A (2015). The physiological and genomic bases of bumble bee social behaviour. Advances in Insect Physiology, 48: 37–93.
  • Beekman M, van Stratum P (1998). Bumblebee sex ratios: why do bumblebees produce so many males? Proceedings of the Royal Society of London. Series B: Biological Sciences, 265 (1405): 1535–1543.
  • Cnaani J, Robinson GE, Bloch G, Borst D, Hefetz A (2000). The effect of queen-worker conflict on caste determination in the bumblebee Bombus terrestris. Behavioral Ecology and Sociobiology, 47 (5): 346–352.
  • Crone EE, Williams NM (2016). Bumble bee colony dynamics: quantifying the importance of land use and floral resources for colony growth and queen production. Ecology Letters, 19 (4): 460–468.
  • Daşgan HY, Özdoğan AO, Kaftanoğlu O, Abak K (2004). Effectiveness of bumblebee pollination in anti-frost heated tomato greenhouses in the Mediterranean basin. Turkish Journal of Agriculture and Forestry, 28 (2): 73–82.
  • de Luca PA, Bussiere LF, Souto-Vilaros D, Goulson D, Mason AC, Vallejo-Marin M (2013). Variability in bumblebee pollination buzzes affects the quantity of pollen released from flowers. Oecologia, 172 (3): 805–816.
  • Duchateau MJ, Velthuis HHW (1988). Development and reproductive strategies in Bombus terrestris colonies. Behaviour, 107 (3-4): 186–207.
  • Gösterit A (2009). Bombus Arısı (Bombus terrestris) Kolonilerinde Dönüşüm Noktasına Göre Yapılan İki Yönlü Seleksiyonun Koloni Gelişimi Üzerine Etkileri. Doktora Tezi. Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya.
  • Gösterit A (2011). Effect of different reproductive strategies on colony development characteristics in Bombus terrestris L. Journal of Apicultural Science, 55 (2): 45–51
  • Gösterit A, Erkan C, Gürel, F (2018). Laboratuvar koşullarında bombus arısı yetiştirme yöntemi. 6. Uluslararası Muğla Arıcılık ve Çam Balı Kongresi, 15-19 Ekim 2018, s. 5–9, Muğla.
  • Gösterit A, Gürel, F (2018). The role of commercially produced bumblebees in good agricultural practices. Scientific Papers: Series D, Animal Science-The International Session of Scientific Communications of the Faculty of Animal Science, 61 (1): 201–204.
  • Grozinger CM, Richards J, Mattila HR (2014). From molecules to societies: mechanisms regulating swarming behavior in honey bees (Apis spp.). Apidologie, 45 (3): 327–346.
  • Gürel F, Gösterit A (2008). Effects of temperature treatments on the bumblebee (Bombus terrestris L.) colony development. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 21 (1): 75–78.
  • Imran M, Ahmad M, Naeem M, Nasir MF, Bodlah I, Nasir M, Sheikh, UAA (2017). Effect of different types of boxes on rearing of Bumble bee, Bombus terrestris. Pakistan Journal of Zoology, 49 (1): 169–174.
  • Lye G, Park K, Osborne J, Holland J, Goulson D (2009). Assessing the value of Rural Stewardship schemes for providing foraging resources and nesting habitat for bumblebee queens (Hymenoptera: Apidae). Biological Conservation, 142 (10): 2023–2032.
  • Macevicz S, Oster G (1976). Modeling social insect populations II: optimal reproductive strategies in annual eusocial insect colonies. Behavioral Ecology and Sociobiology, 1 (3): 265–282.
  • Moerman R, Vanderplanck M, Fournier D, Jacquemart AL, Michez D (2017). Pollen nutrients better explain bumblebee colony development than pollen diversity. Insect Conservation and Diversity, 10 (2): 171–179.
  • Müller CB, Shykoff JA, Sutcliffe GH (1992). Life history patterns and opportunities for queen-worker conflict in bumblebees (Hymenoptera: Apidae). Oikos, 65 (2): 242–248.
  • Negroni MA, Jongepier E, Feldmeyer B, Kramer BH, Foitzik S (2016). Life history evolution in social insects: a female perspective. Current Opinion in Insect Science, 16: 51–57.
  • Requier F, Jowanowitsch KK, Kallnik K, Steffan‐Dewenter I (2020). Limitation of complementary resources affects colony growth, foraging behavior, and reproduction in bumble bees. Ecology, 101 (3): e02946.
  • Rutrecht ST, Brown MJ (2008). Within colony dynamics of Nosema bombi infections: disease establishment, epidemiology and potential vertical transmission. Apidologie, 39 (5): 504–514.
  • Smit JN, Combrink NJJ (2005). Pollination and yield of winter-grown greenhouse tomatoes as affected by boron nutrition, cluster vibration and relative humidity. South African Journal of Plant and Soil, 22 (2): 110–115.
  • Svensson B, Lagerlöf J, Svensson BG (2000). Habitat preferences of nest-seeking bumble bees (Hymenoptera: Apidae) in an agricultural landscape. Agriculture, Ecosystems and Environment, 77 (3): 247–255.
  • Velthuis HH, van Doorn A (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie, 37 (4): 421–451.
  • Weidenmüller A (2004). The control of nest climate in bumblebee (Bombus terrestris) colonies: interindividual variability and self reinforcement in fanning response. Behavioral Ecology, 15 (1): 120–128.
Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1304-9984
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2006
  • Yayıncı: Isparta Uygulamalı Bilimler Üniversitesi