Türkiye'deki Tarımsal Atıklar: Enerji Potansiyeli ve Mevcut Biyokütle Santrallerinin Değerlendirilmesi

Biyokütle enerjisi; enerji güvenliğini, çeşitliliğini artırmak ve kırsal ekonomiyi geliştirmek için devamlı önem kazanmaktadır. Türkiye'deki mevcut biyokütle enerji tesislerinin daha fazla atık kullandığı bilinmesine rağmen, bu tesislerde tarımsal artıkların kullanımının teşvik edilmesi son derece önemlidir. Bu çalışmada tarımsal atıklar iki başlık altında incelenmiştir: birincil atıklar (BA), hasat sonrası tarlada kalan atıklardır (mısır sapı, buğday samanı, vb.), ikincil atıklar (İA) ise ürünlerin fabrikada işlenmesinden sonra kalan atıklardır (badem kabuğu, mısır koçanı, vb.). Tarımsal kalıntı miktarı hesaplanırken toprağın korunması, hayvanların beslenmesi, ısınma amaçlı gibi özel kullanımlar dikkate alınır. Türkiye'de 81 ilde en çok ekilen ürünler listelenmiş ve kalori değeri yüksek ürünlerin atıkları üzerinde yoğunlaşılmıştır. Bu tarım ürünlerine ait birincil ve ikincil atık miktarları iller bazında ayıklanmış ve haritalanmıştır. Daha sonra bu atıkların enerji potansiyeli hesaplanmıştır. Türkiye'de üretilen toplam BA ve İA miktarı yıllık 39 412 683 ton ve 6 803 787 tondur. Santralin toplam verimi %30 ve biyokütle santralinin kapasite faktörünün 0.65 olduğu varsayıldığında, toplam 81 ilde sadece BA'dan yılda 2 438,5 MW ve sadece İA'dan yılda 830 MW güç elde edilecektir. AHP yöntemine göre, nakliye öncesi ön işlem seçiminde maliyet en önemli kriterdir.

Agricultural Residues in Turkey: Energy Potential and Evaluation of Existing Biomass Power Plants

Biomass energy gains importance constantly in order to increase energy security, diversity and develop the rural economy. Most of the existing biomass energy power plants in Turkey use solid waste, it is extremely important to encourage the use of agricultural residues in these facilities. In this study, agricultural residues were examined under two headings: primary residues (PR) are the residues left in the field after harvest (corn stalk, wheat straw, etc.), and secondary residues (SR) are the residues after the products are processed in the factory (almond shell, corn cob, etc.) When calculating the amount of agricultural residues, special uses such as soil protection, animal feeding, heating purposes are taken into account. The most cultivated products across 81 provinces in Turkey are listed and the residues are concentrated on products with high calorific value. The amount of primary and secondary residues belonging to these agricultural products was extracted and mapped based on provinces. Then the energy potential of these residues was calculated. The total amount of PR and SR produced in Turkey is 39 412 683 tonnes and 6 803 787 tonnes. By assuming the total efficiency of the power plant as 30% and the capacity factor of the biomass power plant as 0.65, the power to be obtained from only PRs will be 2 438.5 MW and from only SR will be 830 MW in the total of 81 provinces. Based on AHP method, cost is the most important criterion in the selection of pretreatment before transportation.

___

  • Acar, S., & Ayanoglu, A. (2012). Determination of higher heating values (HHVs) of biomass fuels. Energy Education Science and Technology Part A: Energy Science and Research, 28(2), 749–758.
  • Akkuş, G. (2018). Bağ Budama Artıklarından Torrefaksiyon İle Katı Atık Üretimi. (MSc). Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
  • Aqsha, A., Tijani, M. M., & Mahinpey, N. (2014). Catalytic pyrolysis of straw biomasses (wheat, flax, oat and barley straw) and the comparison of their product yields. WIT Transactions on Ecology and the Environment, 190 Volume, 1007–1015.
  • Avcıoğlu, A. O., Dayıoğlu, M. A., & Türker, U. (2019). Assessment of the energy potential of agricultural biomass residues in turkey. Renewable Energy, 138, 610–619.
  • Bai, X., Wang, G., Gong, C., Yu, Y., Liu, W., & Wang, D. (2017). co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresource Technology, 233, 373–381.
  • Bajwa, D. S., Peterson, T., Sharma, N., Shojaeiarani, J., & Bajwa, S. G. (2018). a review of densified solid biomass for energy production. Renewable and Sustainable Energy Reviews, 96, 296–305.
  • Bilgiç, E. (2014). The comparison of effects of torrefaction and carbonization treatments on biomass. (MSc). İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology, 237, 57–63.
  • Brunelli, M. 2015. Introduction to the analytic hierarchy process, Springer, ISBN:978-3-319-12502-2
  • Cergibozan, R. (2022). Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries. Renewabke Energy, 183, 617-626.
  • Danish, M., Naqvi, M., Farooq, U., & Naqvi, S. (2015). characterization of south Asian agricultural residues for potential utilization in future ‘Energy Mix.’. Energy Procedia, 75, 2974–2980.
  • Demirbas, A. (2016). Calculation of higher heating values of biomass fuels. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(18), 2693–2697.
  • Estiati, I., Freire, F. B., Freire, J. T., Aguado, R., & Olazar, M. (2016). Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass. Fuel, 180, 377–383.
  • ETKB. (2021). https://enerji.gov.tr/
  • Fornés Comas, J., Socias i Company, R., & Alonso Segura, J. M. (2019). Shell hardness in almond: cracking load and kernel percentage. Scientia Horticulturae, 245(June 2018), 7–11.
  • García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2014). Spanish biofuels heating value estimation. Part I: Ultimate Analysis Data. Fuel, 117 (PARTB), 1130–1138.
  • Gebreegziabher, T., Oyedun, A. O., Luk, H. T., Lam, T. Y. G., Zhang, Y., & Hui, C. W. (2014). Design and optimization of biomass power plant. Chemical Engineering Research and Design, 92(8), 1412–1427.
  • Havrysh, V., Kalinichenko, A., Brzozowska, A., & Stebila, J. (2021). Life cycle energy consumption and carbon dioxide emissions of agricultural residue feedstock for bioenergy. Applied Sciences, 11(5), 2009.
  • Ioannidou, S.M., Pateraki, C., Ladakis, D., Papapostolou, H., Tsakona, M., Vlysidis, A., Kookos, I.K., Koustinas, A. (2020). Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresource Technology, 307, 123093.
  • Ioannou, H., Tsantopoulos, G., Arabatzis, G., Andreopoulou, Z., Zafeiriou, E. (2018). A spatial decision support system framework for the evaluation of biomass energy production locations: Case study in the regional unit of Drama, Greece. Sustainability, 10, 531.
  • Jiang, Y., Havrysh, V., Klymchuk, O., Nitsenko, V., Balezentis, T., & Streimikiene, D. (2019). Utilization of crop residue for power generation: The case of Ukraine. Sustainability, 11(24), 1– 21.
  • Khdair, A., & Abu-Rumman, G. (2020). Sustainable environmental management and valorization options for olive mill byproducts in the Middle East and North Africa (MENA) region. Processes, 8(6), 1–22.
  • Moayedi, H., Aghel, B., Abdullahi, M. M., Nguyen, H., & Safuan A Rashid, A. (2019). Applications of rice husk ash as green and sustainable biomass. Journal of Cleaner Production, 237, 117851.
  • Mohammed, I. Y., Abakr, Y. A., Musa, M., Yusup, S., Singh, A., & Kazi, F. K. (2016). Valorization of bambara groundnut shell via intermediate pyrolysis: Products Distribution and Characterization. Journal of Cleaner Production, 139, 717–728.
  • Montero, G., Coronado, M. A., Torres, R., Jaramillo, B. E., García, C., Stoytcheva, M., Vázquez, A. M., León, J. A., Lambert, A. A., & Valenzuela, E. (2016). Higher heating value determination of wheat straw from Baja California, Mexico. Energy, 109, 612–619.
  • Morato, T., Vaezi, M., & Kumar, A. (2019). Assessment of energy production potential from agricultural residues in Bolivia. Renewable and Sustainable Energy Reviews, 102(October 2018), 14–23.
  • Murele, O. C., Zulkafli, N. I., Kopanos, G., Hart, P., & Hanak, D. P. (2020). integrating biomass into energy supply chain networks. Journal of Cleaner Production, 248.
  • Nhuchhen, D. R., & Abdul Salam, P. (2012). Estimation of higher heating value of biomass from proximate analysis: A New Approach. Fuel, 99, 55–63.
  • Nunes, L. J. R., Causer, T. P., & Ciolkosz, D. (2020). Biomass for energy: A Review on supply chain management models. Renewable and Sustainable Energy Reviews, 120, 1–8.
  • Ozturk, M., Saba, N., Altay, V., Iqbal, R., Hakeem, K.R., Jawaid, M., Ibrahim, F.H. (2017). Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia. Renewable and Sustainable Energy Reviews, 79, 1285-1302.
  • Paletto, A., Bernardi, S., Pieratti, E., Teston, F., Romagnoli, M. (2019). Assessment of environmental impact of biomass power plants to increase the social acceptance of renewable energy technologies. Heliyon, 5, e02070.
  • Patsios, S. I., Kontogiannopoulos, K. N., Mitrouli, S. T., Plakas, K. V., & Karabelas, A. J. Characterisation of Agricultural Waste Co-and by-Products; AgroCycle Project. 2016. Available from: http://www.agrocycle.eu/files/2017/10/D1.2_AgroCycle.pdf, Accessed date: 05 May 2021
  • Perea-Moreno, M. A., Manzano-Agugliaro, F., & Perea-Moreno, A. J. (2018). Sustainable energy based on sunflower seed husk boiler for residential buildings. Sustainability (Switzerland), 10(10).
  • Polat, M. (2020). Türkiye’nin Tarımsal Atık Biyokütle Enerji Potansiyelindeki Değişim. Toprak Su Dergisi, 19–24.
  • Poudel, J., & Oh, S. C. (2014). Effect of torrefaction on the properties of corn stalk to enhance solid fuel qualities. Energies, 7(9), 5586–5600.
  • Qian, H., Zhu, W., Fan, S., Liu, C., Lu, X., Wang, Z., Huang, D., & Chen, W. (2017). Prediction models for chemical exergy of biomass on dry basis from ultimate analysis using available electron concepts. Energy, 131, 251–258.
  • Rentizelas, A.A., Tolis, A.J., Tatsiopoulos, I.P. (2009). Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renewable and Sustainable Energy Reviews, 13, 887-894.
  • Ríos-Badrán, I. M., Luzardo-Ocampo, I., García-Trejo, J. F., Santos-Cruz, J., & Gutiérrez-Antonio, C. (2020). Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy, 145, 500–507.
  • Santos, J., Ouadi, M., Jahangiri, H., & Hornung, A. (2019). Integrated intermediate catalytic pyrolysis of wheat husk. Food and Bioproducts Processing, 114, 23–30.
  • Tang, C., Zhang, D., & Lu, X. (2015). Improving the yield and quality of tar during co-pyrolysis of coal and cotton stalk. BioResources, 10(4), 7667–7680.
  • Thanarak, P. (2012). Supply chain management of agricultural waste for biomass utilization and CO2 emission reduction in the lower Northern Region of Thailand. 14, 843–848.
  • Wang, L., Skreiberg, Ø., Becidan, M., & Li, H. (2016). Investigation of rye straw ash sintering characteristics and the effect of additives. Applied Energy, 162, 1195–1204.
  • Werther, J., Saenger, M., Hartge, E.U., Ogada, T., Siagi, Z. (2000). Combustion of agricultural residues. Progress in Energy and Combustion Science, 26, 1-27.
  • Yang, T., Ma, J., Kai, X., Li, R., & Ding, J. (2016). Ash Transformation and deposition characteristic during straw combustion, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(6), 790–796.
  • Yao, X., Xu, K., Yan, F., & Liang, Y. (2017). The influence of ashing temperature on ash foulinq and slagging characteristics during combustion of biomass fuels. Bio Resources, 12(1), 1593–1610.
  • Zhao, C., Liu, X., Chen, A., Chen, J., Lv, W., & Liu, X. (2020). Characteristics evaluation of bio-char produced by pyrolysis from waste hazelnut shell at various temperatures. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–11.
  • Zhou, H., Luo, Z., Liu, D., & Ma, W. C. (2019). Effect of biomass ashes on sintering characteristics of high/low melting bituminous coal ash. Fuel Processing Technology, 189(January), 62–73.
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-7576
  • Başlangıç: 1991
  • Yayıncı: Yüzüncü Yıl Üniversitesi Ziraat Fakültesi