Porphyridium cruentum’un Kapalı Alan Tübüler Fotobiyoreaktör Kültüründe Fikoeritrin Birikimi

Mikroalgler, akuakültür ile birlikte farmasötik, yem, gıda, tarım ve enerji gibi endüstriyel alanlarda kullanılmaktadır. Mikroalg pigmentleri potansiyel gıda renklendirme ajanı olmakla birlikte, yapılarında çoklu doymamış yağ asitleri gibi biyoaktif bileşenler içermektedir. Porphyridium cruentum fikoeritrin, klorofil ve karotenoidler gibi değerli pigmentleri biriktirebilme yeteneğine sahip kırmızı bir alg olarak bilinmektedir. Bu çalışmada, P. cruentum’un 51 gün boyunca kapalı alanda pilot ölçekli tübüler fotobiyoreaktörde kültürü yapılmıştır. En yüksek hücre sayısı 31.84 x 106 hücre mL-1 olarak belirlenmiş olup, en yüksek spesifik büyüme oranı 0.80 olarak belirlenmiştir. Toplam fikobiliprotein ve fikoeritrin miktarları erken üssel fazda sırasıyla 0.252 ± 0.009 mg mL-1 ve 0.224 ± 0.007 mg mL-1’ye ulaşmıştır.

Phycoerythrin Accumulation of Porphyridium cruentum Culture at Indoor Tubular Photobioreactor

Microalgae are used in aquaculture and various industrial fields such as pharmaceuticals, feed, food, agriculture, and energy. Microalgae is a potential natural food coloring agent as pigments and contain bioactive components such as polyunsaturated fatty acids (PUFA) in their composition. Porphyridium cruentum is a red alga with the ability to accumulate valuable pigments biomolecules such as phycoerythrin (PE), chlorophyll, and other carotenoids. In this study, P. cruentum was cultured for 51 days at the indoor pilot scale tubular photobioreactor (PBR). The highest cell number was 31.84 x 106 cells mL-1 and the highest specific growth rate was determined as 0.80. Total phycobiliprotein and phycoerythrin amounts were reached 0.252 ± 0.009 mg mL-1 and 0.224 ± 0.007 mg mL-1 at the early exponential phase, respectively.

___

  • Acién, F. G., Molina, E., Reis, A., Torzillo, G., Zittelli, G. C., Sepúlveda, C. & Masojídek, J. (2017). Photobioreactors for the production of microalgae. Microalgae-based biofuels and bioproducts, 1-44.
  • del Pilar Sánchez-Saavedra, M., Castro-Ochoa, F. Y., Nava-Ruiz, V. M., Ruiz-Güereca, D. A., Villagómez-Aranda, A. L., Siqueiros-Vargas, F. & Molina-Cárdenas, C. A. (2018). Effects of nitrogen source and irradiance on Porphyridium cruentum. J Appl Phycol, 30(2), 783-792.
  • Durmaz, Y. & Erbil, G. Ç. (2020). Comparison of Industrial-scale Tubular Photobioreactor to FRP (Fiberglass reinforced plastic) Panel Photobioreactor on Outdoor Culture of Nannochloropsis oculata in the Marine Hatchery. Su Ürünleri Dergisi, 37(4), 1-1.
  • Durmaz, Y., Tamtürk, F., Konar, N., Toker, Ö. S., & Palabiyik, İ. (2017). Effect of Pigment Composition of Porphyridium Cruentum as Continuously Culture Method in Industrial Scale Tubular Photobioreactor. Int J Life Sci Biotechnol Pharma Res, 6, 18-21.
  • Enzmann, F., Stöckl, M., Zeng, A. P. & Holtmann, D. (2019). Same but different–Scale up and numbering up in electrobiotechnology and photobiotechnology. Eng Life Sci, 19(2), 121-132.
  • Fuentes, M. R., Fernández, G. A., Pérez, J. S. & Guerrero, J. G. (2000). Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem, 70(3), 345-353.
  • Fuentes-Grünewald, C., Bayliss, C., Zanain, M., Pooley, C., Scolamacchia, M., & Silkina, A. (2015). Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier Transform Infrared spectroscopy for monitoring biomass composition and metabolites production. Bioresour Technol, 189, 357-363.
  • Gantt, E. & Lipschultz, C. A. (1974). Phycobilisomes of Porphyridium cruentum. Pigment analysis. Biochem, 13(14), 2960-2966.
  • Guillard, R. R. (1975). Culture of phytoplankton for feeding marine invertebrates. In Culture of marine invertebrate animals (pp. 29-60). Springer, Boston, MA.
  • Kent, M., Welladsen, H. M., Mangott, A., & Li, Y. (2015). Nutritional evaluation of Australian microalgae as potential human health supplements. PloS one, 10(2), e0118985.
  • Li, S., Ji, L., Chen, C., Zhao, S., Sun, M., Gao, Z. & Fan, J. (2020). Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. Bioresour Technol, 123362.
  • Li, T., Xu, J., Wu, H., Jiang, P., Chen, Z. & Xiang, W. (2019). Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Marine drugs, 17(2), 124.
  • Liqin, S., Wang, C. & Lei, S. (2008). Effects of light regime on extracellular polysaccharide production by Porphyridium cruentum cultured in flat plate photobioreactors. In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering (pp. 1488-1491). IEEE.
  • Razaghi, A., Godhe, A., & Albers, E. (2014). Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Open Life Sciences, 9(2), 156-162.
  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. J biosci bioeng, 101(2), 87-96.
  • Sudhakar MP, Jagatheesan A, Perumal K, Arunkumar K. (2015). Methods of phycobiliprotein extraction from Gracilaria crassa and its applications in food colourants. Algal Research. 12: p. 115–120.
  • Toker, O. S. (2019). Porphyridum cruentum as a natural colorant in chewing gum. Food Sci Technol, 39, 195-201.
  • Wang, J., Chen, B., Rao, X., Huang, J. & Li, M. (2007). Optimization of culturing conditions of Porphyridium cruentum using uniform design. World Journal of Microbiology and Biotechnology, 23(10), 1345-1350.
  • Xu, Y., Jiao, K., Zhong, H., Wu, S., Ho, S. H., Zeng, X. & Lin, L. (2020). Induced cultivation pattern enhanced the phycoerythrin production in red alga Porphyridium purpureum. Bioprocess Biosyst Eng, 43(2), 347-355.
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-7576
  • Başlangıç: 1991
  • Yayıncı: Yüzüncü Yıl Üniversitesi Ziraat Fakültesi