Enzimatik Hidroliz Yöntemi Kullanılarak Balık İşleme Atıklarından Balık Protein Hidrolizatı Üretimi

Balık atıkları besinsel açıdan değerli, fonksiyonel özelliklere sahip ve kolay sindirilebilir, ekonomik değeri yüksek proteinli ürünlere dönüştürülebilirler. Balık işleme atıklarından kullanılabilir gıda ve biyoaktif bileşiklerin dönüşümü ile ilgili çalışmalara ve ticari üretime ağırlık verilmiştir. Balık protein hidrolizatları (BPH) ticari ürün olarak fonksiyonel gıda, hayvansal yem, organik gübre ve evcil hayvan gıdası olarak kullanıldığı gibi BPH’ larının içerdikleri nutrasötik özellikteki biyoaktif peptitler ile antihipertensif, antitrombotik, antikanser, immunomodulatör ve antioksidan aktivitesi gösterdikleri için tıp ve farmakolji alanında da değerlendirilmektedir. Hidrolizatlarının besleyici özelliklerinin, diğer protein hidrolizatlarından daha dengeli ve üstün olduğunu göstermektedir. Protein hidrolizatı üretmek için kimyasal ve enzimatik olmak üzere iki farklı yöntem kullanılmaktadır. Son zamanlarda; daha düşük sıcaklık, basınç ve 5-8 arası bir pH aralığı kullanıldığı için enzimatik yöntemle hidrolizat üretimini daha cazip hale getirmiştir. Hidrolizasyonun en etkili göstergesi hidroliz derecesi (HD(%)) olarak kullanılmıştır. Yapılan çalışmalardan elde edilen bulgulara göre, protein geri kazanımı için parçalanmış peptit bağlarının daha yüksek olması, HD(%)’ nin yükselmesine neden olmaktadır. Küçük molekül ağırlığına sahip proteinlerin suda daha fazla çözünürlüğü, hidrolizatın protein geri kazanımını artırarak, fonksiyonel özelliklerini daha kullanılabilir hale getirmektedir. Araştırmalarda elde edilen farklı değerlerin balık türlerine, atık kompozisyonuna, enzim türüne, hidroliz yöntemine (sıcaklık, süre ve enzim oranı) göre değişebileceği görülmektedir. Bu araştırmada balık işleme atıklarından enzimatik hidroliz yöntemi kullanılarak balık protein hidrolizatı üretimi konusu derlenmiştir.

Production of Fish Protein Hydrolizate Using Enzymatic Hydrolysis from Fish Processing Wastes

Fish waste can be transformed into nutritionally valuable, functional and easily digestible protein products with high economic value. Studies on the transformation of usable food and bioactive compounds from fish processing wastes and commercial production were focused. Fish protein hydrolyzates (FPH) are used as functional food, animal feed, organic fertilizer and pet food as commercial products, as well as in the field of medicine and pharmacology as they show antihypertensive, antithrombotic, anticancer, immunomodulatory and antioxidant activities with the nutraceutical properties they contain. It shows that the nutritional properties of fish hydrolyzates are more balanced and superior than other protein hydrolyzates. Two different methods, chemical and enzymatic, are used to produce protein hydrolyzate. Recently; It has made the production of hydrolyzate by enzymatic method more attractive as it uses lower temperature, pressure and a pH range of 5-8. The most effective indicator of hydrolysis was used as HD (%). According to the findings obtained from the studies conducted, it has been determined that higher cleaved peptide bonds for protein recovery cause HD (%) to increase. It has been reported that proteins with smaller molecular weights have greater solubility in water, thus increasing the protein recovery of the hydrolyzate and making its functional properties more useful. It is seen that the different values obtained in the studies may vary according to the fish species, waste process, enzyme type, hydrolysis method (temperature, time and enzyme ratio). In this study, the production of fish protein hydrolyzate from fish processing wastes by using enzymatic hydrolysis method was compiled

___

  • Adler-Nissen, J. 1979. Determination of the Degree of Hydrolysis of Food Protein Hydrolysates by Trinitrobenzenesulfonic Acid. J. Agric.
  • Adler-Nissen, J., 1984.Control of the proteolytic reaction and the level of bitterness in protein hydrolysis processes, J. Chem. Technol. Biotechnol., 34B, 215.
  • Althouse, P.J., Dinakar, P., Kilara, A. 1995. Screening of proteolytic enzymes to enhance foaming of whey protein isolates. J Food Sci 60:1110–2.
  • Anonim, 2009. Proteinler www.lisebiyoloji.com/protein.html- (Erişim tarihi: 20.12.2017).
  • Baharuddin, N.A., Halim, N.R.A., Sarbon, N. M. 2016. Effect of degree of hydrolysis (DH) on the functional properties and angiotensin I-converting enzyme (ACE) inhibitory activity of eel (Monopterus Sp.) protein hydrolysate. International Food Research Journal, in press.
  • Belitz, H. D., Grosch, W., Schieberle, P. 2004. Fish, wales, crustaceans, mollusks. Food chemistry. Berlin, Heidelberg:Springer, 619–642.
  • Benjakul, S., Morrissey, M. T. 1997. Protein hydrolysates from Pacific whiting solidwastes. Journal of Agricultural ve Food Chemistry, 45(9): 3423–3430.
  • Byun H.G., Kim, S.K. 2001. Purification ve Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptites from Alaska Pollack (Theragra chalcogramma) Skin. Process Biochemistry, 36: 1155-1162.
  • Chalamaiah, M., Dinesh K. B., Hemalatha, R., Jyothirmayi, T.. 2012. Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities ve Applications: A Review. Food Chemistry, 135: 3020-3038.
  • Chotikachinda, R., Tantikitti, C., Benjakul, S., Rustad, T., Kumarnsit, E. 2013. Production of protein hydrolysates from skipjack tuna (Katsuwonus pelamis) viscera as feeding attractants for Asian seabass (Lates calcarifer). Aquaculture Nutrition, 19(5): 773-784.
  • Carjaval, A.K. 2013. Utilization of by-products from Norwegian springspawning herring for human consumption. PhD thesis, NTNU, Facultyof Natural Sciences ve Technology, Department of Biotechnology, PhD thesis.
  • Diniz, F. M., Martin, A.M. 1997. Effects of the Extent of Enzymatic Hydrolysis on Functional Properties of Shark Protein Hydrolysate. Lebensm. Wiss. U.Technol., 30: 266-272.
  • Doucet, D., Gauthier, F.S., Otter, E.D., Foegeding, A.E. 2003. Enzyme-induced gelation of extensively hydrolyzed whey proteins by Alcalase: comparison with the plastein reaction and characterization of interactions. J Agric Food Chem, 51: 6036–42.
  • de Oliveira, D.A.S.B., Licodiedoff, S., Furigo, A., Ninow, J.L., Bork,J.A., Podestá, R., Block, J.M., Waszczynskyj, N., 2017. Enzymaticextraction of oil from yellowfin tuna (Thunnus albacares)by-products: a comparison with other extraction methods. Int.J. Food Sci. Technol. 52, http://dx.doi.org/10.1111/ijfs.13324.
  • Food and Agriculture Organization (2018) The State of Food and Agriculture 2018. Migration, Agriculture and Rural Development. Rome. Licence: CC BY-NC-SA 3.0 IGO.
  • Feng, J. Xion, Y.L. 2003. Interaction and functionality of mixed myofibrillar and enzyme-hydrolyzed soy proteins. J Food Sci 68:803–9.
  • Five, K. 2012. Enzymatic hydrolysis of salmon frames - effect of processconditions on ACE-inhibiting activities of fish protein hydrolysates. NTNU, Department of Biotechnology, Master’sthesis.
  • Gao, M., Hirata, M., Toorisaka, E., Hano, T. (2006). Acid-hydrolysis of fish wastes forlactic acid fermentation. Bioresource Technology, 97(18): 2414–2420.
  • Gbogouri, G. A., Linder, M., Fanni, J., Parmentier, M. 2004. Influence of hydrolysis degree on the functional properties of salmon byproduct hydrolysates. Journal of Food Science, 69: 615–622.
  • Giménez, B., Alemán, A., Montero, P., Gómez-Guillén, M. C. 2009. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chemistry, 114: 976–983.
  • Guerard, F., Guimas, L., Binet, A. 2002. Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic, 19, 489-498.
  • He, S., Franco, C., Zhang, W., 2013. Functions, Applications ve Production of Protein Hydrolysates from Fish Processing Co-Products (FPCP). Food Research International, 50: 289-297.
  • Herpvei, N. H., Rosma, A., Wan Nadiah, W.A. 2011. The Tuna Fishing Industry: A New Outlook on Fish Protein Hydrolysates. Comprehensive Reviews in Food Science and Food Safety, 11: 195-207.
  • Hinsui, J., Detkamhaeng, N., Worawattanamateekul, W. 2016. Production of protein hydrolysate from yellowfin (Thunnus albacares) and skipjack tuna (Katsuwonous pelamis) viscera. Kasetsart University Fisheries Research Bulletin, 40(2): 51-67.
  • Hordur, G., Kristinsson, B., Rasco, A. 2000. Fish protein hydrolysates:production, biochemical ve functional properties. Food Science ve Nutrition, 40(1): 43–81.
  • Hoyle, N.T., Merritt, J.H., 1994. Quality of Fish Protein Hydrolysates from Herring (Clupea harengus). Journal of Food Science, 59 (1): 76-79.
  • Hultin, H. O., Kelleher, S. D. 2000. Surimi processing from dark muscle fish. Food Science And Technology-New York-Marcel Dekker, 59-78.
  • Hultman, L. 2004. Endogenous proteolytic enzymes - Studies of theirimpact on fish muscle proteins ve texture. NTNU, Facultyof Natural Sciences ve Technology, Department of Biotechnology, PhD thesis.
  • Idowu AT, Benjakul S, Sinthusamran S, Sookchoo P, Kishimura H (2019) Protein hydrolysate from salmon frames: Production,characteristics and antioxidative activity. Journal of Food Biochemistry 43: e12734.
  • Jung, W., Mendis, E., Je, J., Park, P., Son, B. W., Kim, H. C., Choi, Y. K., Kim, S. 2006. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry, 94: 26–32.
  • Kim, S.K., Mendis, E. 2006. Bioactive Compounds from Marine Processing Byproducts-A Review. Food Research International, 39: 383-393.
  • Koç, S. 2016. Hamsi (Engraulis encrasicolus) ve İşleme Atıklarından Elde Edilen Protein Hidrolizatlarının Besleyici, Fonksiyonel Ve Biyoaktif Özelliklerinin Araştırılması, Doktora Tezi, Ç.O.M.Ü Fen Bilimleri Enstitüsü, Çanakkale.
  • Korkmaz, K. (2018). Ticari enzimler kullanılarak farklı balık türü atıklarından hidrolizat üretimi ve Kalitesinin belirlenmesi, Doktora Tezi, O.D.Ü Fen Bilimleri Enstitüsü, Ordu.
  • Kristinsson, H.G., Rasco, B.A., 2000a. Biochemical ve Functional Properties of Atlantic Salmon (Salmo salar) Muscle Proteins Hydrolyzed with Various Alkalie Proteases. J. Agric. Food Chem., 48: 657-666.
  • Kuipers, B.J.H., Van Koningsveld, G.A., Alting, A.C., Driehuis, F., Gruppen, H., Voragen, A.G.J. 2005. Enzymatic hydrolysis as a means of expanding the cold gelation conditions of soy proteins. J Agric Food Chem 4: 1031–8.
  • Ladrat, C., Verrez-Bagnis, V., Noe¨ l, J., Fleurence, J. 2003. In vitro proteolysis of myofibrillar ve sarcoplasmic proteins of white muscle of sea bass (Dicentrarchus labrax L.): Effects of cathepsins B, D ve L. Food Chemistry, 81: 517–525.
  • Liaset, B., Lied, E., Espe, M. 2000. Enzymatic hydrolysis of by-products from thefish-filleting industry: Chemical characterisation ve nutritional evaluation. Journal of the Science of Food ve Agriculture, 80: 581–589.
  • Lin, S., Chiang, W., Cordle, C.T., Thomas, R.L. 1997. Functional and immunological properties of casein hydrolysates produced from a two-stage membrane system. J Food Sci., 62: 480–3.
  • Mendis, E., Rajapakse, N., Kim, S.K., 2005. Antioxidant Properties of a Radical-Scavenging Peptite Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate. J. Agric. Food Chem., 53: 581-587.
  • Mohr, V. 1977. Fish protein concentrate production by enzymatic hydrolysis.The Federation of European Biochemical Societies, 44: 53–62.
  • Neil, D., Guy, S. 2013. Handbook of proteolytic enzymes, volume 2. Amsterdam: Elsevier Academic Press, 3rd edition. Nemati, M., Javadian, S. R., Ovissipour, M., Keshavarz, M. 2012. A study on the properties of alosa (Alosa caspia) by-products protein hydrolysates using commercial enzymes.
  • Ovissipour, M., Abedian, A. M., Motamedzadegan, A., Rasco, B., Safari, R., Shahiri, H. 2009a. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus)viscera. Food Chemistry, 115: 238–242.
  • Ovissipour, M., Safari, R., Motamedzadegan, A., Regenstein, J. M., Gildberg, A., Rasco, B. 2012. Use of hydrolysates from Yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, 5: 73–79.
  • Pastoriza, L., Sampedro, G., Cabo, M. L., Herrera, J. J. R., Bernardez, M. 2003. Solubilisation of proteins from rayfish residues by endogenous and commercial enzymes. Journal of the Science of Food and Agriculture, 84: 83–88.
  • Raghavan, S., Kristinsson, H.G. 2008. Antioxidative efficacy of alkali-treated tilapia protein hydrolysates: A comparative study of five enzymes Journal of Agricultural and Food Chemistry, 56 (4) : 1434-1441.
  • Rustad, T., Storrø, I., and Slizyte, R. 2011. Possibilities for the utilisationof marine by-products. International Journal of Food Science & Technology, 46: 2001–2014.
  • Sanmartin, E., Arboleya, J. C., Villamiel, M., Moreno, J. 2009. Recent advances in the recoveryve improvement of functional proteins from fish processing by-products: Use of protein glycation as an alternative method. Comprehensive Reviews in Food Scienceve Food Safety, 8(4): 332–344.
  • Sathivel, S., Smiley, S., Prinyawiwatkul, W., Bechtel, P. J. 2005. Functional and nutritional properties of red salmon (oncorhynchus nerka) enzymatic hydrolysates. Journal of Food Science, 70(6): 401–406.
  • Shahidi, F. 1994. 16 Seafood processing by-products. Seafoods: Chemistry, Processing Technology and Quality, 320.
  • Shahidi, F., Han, X.Q., Synowiecki, J. 1995. Production ve Characteristics of Protein Hydrolysates from Capelin (Mallotus villosus). Food Chemistry, 53: 285-293.
  • Slizyte, R. 2004. Hydrolysis of cod (Gadus morhua) by-products: Influenceof raw material composition ve process conditions. PhD thesis, NTNU,Faculty of Natural Sciences ve Technology, Department of Biotechnology.
  • Slizyte, R., Dauksˇas, E., Falch, E., Storro, I., Rustad,T. 2005a.Yield and composition of different fractions obtained after enzymatic hydrolysis of cod (Gadus morhua) by-products. Process Biochemistry, 40: 1415–1424.
  • Slizyte, R., Rustad, T., Storro, I. 2005b. Enzymatic hydrolysis of cod (Gadus morhua) by products: Optimization of yield ve properties of lipid and protein fractions.Process Biochemistry, 40: 3680–3692.
  • Sugiyama, K., Takada, K., Egawa, M., Yamamoto, I., Onzuka, H., Oba, K. 1991. Hypotensive effect of fish-protein hydrolysate. J Japan Soc Biosci Biotechnol Agrochem, 65:35– 43.
  • Theodore, A. E. 2005. Bioactive and functional properties of catfish protein hydrolysates and catfish protein isolates .Doctoral dissertation, University of Florida.
  • Tveit, G. M. 2014. Enzymatic hydrolysis of chicken rest raw material.Master’s thesis, NTNU, Department of Biotechnology. Vareltzis, K. 2000. Fish proteins from unexploited veunderdeveloped sources. Novel macromolecules in food systems. Elsevier, 133–159.
  • Venugopal, V. 2009b. Seafood proteins: Functional properties and protein supplements. Marine products for healthcare.
  • Vercruysse, L., Camp, J. V., Smagghe, G. 2005. ACE inhibitory peptites derived from enzymatic hydrolysates of animal muscle protein: A review. Journal of Agriculture and Food Chemistry, 53(21): 8106–8115.
  • Wasswa, J., Tang, J., Gub, X., Yuan, X. 2007. Influence of the Extent of Enzymatic Hydrolysis on the Functional Properties of Protein Hydrolysate from Grass Carp (Ctenopharyngodon idella) Skin. Food Chemistry, 104: 1698-1704.
  • Wu, H., Chen, H., Shiau, C. 2003. Free amino acids ve peptites as related to antioxidant properties in protein hydrolysates of Mackerel (Scomber austriasicus). Food Research International, (36): 949–957.
  • Yin H, Pu J, Wan Y, Xiang B, Bechtel PJ, Sathivel S (2010) Rheological and functional properties of catfish skin protein hydrolysates. Journal of Food Science 75: 11–17.
  • Yoon, S., Watanabe, E., Ueno, H., Kishi, M.J. 2015. Potential habitat for chum salmon (Oncorhynchus keta) in the Western Arctic based on a bioenergetics model coupled with a three-dimensional lower trophic ecosystem model. Prog. Oceanogr. 131: 146–158.
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-7576
  • Başlangıç: 1991
  • Yayıncı: Yüzüncü Yıl Üniversitesi Ziraat Fakültesi
Sayıdaki Diğer Makaleler

İran Zeytinyağlarının Biyofenolik Minör Polar Bileşiklerine Göre Karakterizasyonu ve Organoleptik Özelliklere Katkıları

Forough SHAVAKHİ, Anosheh RAHMANİ, Parviz MORADİ

Bazı Yonca Çeşitlerinde (Medicago sativa L.) Biçim Zamanının Ot Verimi ve Kalitesi Üzerine Etkilerinin Saptanması

Gürsel GÖKKAYA, Adnan ORAK

Türkiye’de Yetişen Bazı Apiaceae Türlerinin Uçucu Yağlarının Kök Lezyon Nematodlarına Karşı Nematisidal Aktiviteleri

Fatma Gül GÖZE ÖZDEMİR, Bekir TOSUN, Arif ŞANLI, Tahsin KARADOĞAN

Ekmeklik Buğdayda Optik Sensör ile Azotlu Gübre Tavsiyesi

Erdinc SAVASLI, Oğuz ÖNDER, Ramis DAYIOĞLU, Didem ÖZEN, Yaşar KARADUMAN, Suat ÖZDEMİR, Özgür ATEŞ, Melih ÖZSAYIN

Farklı Temel Toprak İşleme Yöntemlerinin Ayçiçeği Tohumlarının Toprak Katmanındaki Dikey Dağılımına ve Bitki Gelişimine Etkisi

Peter YANKOV, Miglena DRUMEVA

Bazı Ekmeklik Buğdayların Tuz Uygulamasına Tepkileri ve Besin Elementi İçeriklerinin Belirlenmesi

Hasan CAN, Mehmet HAMURCU, Sait GEZGİN, Erdoğan HAKKI

Şanlıurfa İlinde Mısır Tarımı Yapılan Alanların Selenyum ve Mikro Besin Elementleri Bakımından Beslenme Durumunun Değerlendirilmesi

Aişe DELİBORAN, Abdullah Suat NACAR

Türkiye Populasyonlarıyla mtCOI Genine Dayalı Erynnis tages ve Erynnis marloyi'nin (Lepidoptera, Hesperiidae) Moleküler Değerlendirmeleri ve Genetik Divergensi

Sibel KIZILDAĞ

Türkiye’de Tarımsal Sabit Sermaye Yatırımları ve Tarımsal Büyüme Arasındaki İlişki

Nazife Özge BEŞER, Esra KADANALI

Ficaria verna Huds.’nin Antimikrobiyal ve Antioksidan Etkisi

Şule İNCİ, Ayşe EREN, Sevda KIRBAĞ, Ahmet İsmail ÖZKAN