Artçı Depremler Üzerinde Oluşan Gerilme Değişimlerinin Coğrafi ve İstatistiksel Dağılımlarının İncelenmesi

Deprem sırasında fay çevresinde oluşan statik gerilme değişiminin bir sonra meydana gelecek deprem veya depremlerin oluşumuna etki ettiği bilinmektedir. Bir depremin ardından oluşan ±0.1 bar (±0.01 MPa) mertebesindeki gerilme değişimi artçı şokların dağılımını etkileyebilmektedir. Halbuki büyük depremlerden sonra açığa çıkan daha büyük gerilmeler 200 km yarıçaplı bir alanda oluşacak artçı şok dağılımlarını mekânsal ve zamansal olarak da etkilemektedir. Bu çalışmada Küresel Centroid Moment Tensör (CMT) kataloğundan seçilen 116 adet M≥7 deprem kaynak olarak modellenerek çevresinde meydana getirdiği gerilme değişim alanlarına düşen artçı şok dağılımları incelenmiştir. Katalog üzerinde farklı zaman periyotlarında de test edilen analizlere göre, her bir ana deprem sonrası oluşan artçı şok dağılımı %58 ile %62 arasında gerilmenin arttığı alanlarda, %38 ile %42 arasında oluşan artçı şoklar ise, gerilme azalımı olan alanlarda meydana geldiği gözlenmiştir. Yapılan analizlere göre küresel çapta gerçekleşen gerilme difüzyonu ters faylanmalar vasıtasıyla gerçekleşmiştir. Depremler sonucunda oluşan artçı şokların %80’i ters faylanma mekanizmalı ana depremlerden meydana gelmektedir. Dolayısıyla, depremlerden sonra çevre faylarda meydana gelen gerilme değişimlerinin hesap edilmesiyle, sismik tehlike bölgeleri tespit edilebilmektedir.

___

  • Bayrak, Y. ve Bayrak, E. (2011). An Evaluation of Earthquake Hazard Potential for Different Regions in Western Anatolia Using the Historical and Instrumental Earthquake Data. Pure and Applied Geophysics,169, 1859–1873.
  • Bird, P. (2003). An Updated Digital Model of Plate Boundaries. Geochemistry, Geophysics, Geosystems, 4(3), 1027-1079.
  • Deng, J. ve Sykes, L. R. (1997). Stress Evolution in Southern California and Triggering of Moderate-, Small-, and Micro-Size Earthquakes. Journal of Geophysical Research: Solid Earth, 102(B11), 24411–24435.
  • Ekström, G., Nettles, M. ve Dziewoński, A. M. (2012). The Global CMT Project 2004–2010: Centroid-Moment Tensors for 13,017 Earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9.
  • Enescu, B. ve Ito, K. (2002). Spatial Analysis of the Frequency-Magnitude Distribution and Decay Rate of Aftershock Activity of the 2000 Western Tottori Earthquake. Earth, Planets and Space, 54(8), 847–859.
  • Freed, A. M. (2005). Earthquake Triggering By Static, Dynamic, And Postseismic Stress Transfer. Annual Review of Earth and Planetary Sciences, 33(1), 335–367.
  • Freed, A. M., Ali, S. T. ve Bürgmann, R. (2007). Evolution of Stress in Southern California for the Past 200 Years from Coseismic, Postseismic and Interseismic Stress Changes. Geophysical Journal International, 169(3), 1164–1179.
  • Freed, A. M. ve Lin, J. (1998). Time-Dependent Changes in Failure Stress Following Thrust Earthquakes. Journal of Geophysical Research: Solid Earth, 103(B10), 24393– 24409.
  • Frohlich, C. ve Davis, S. D. (1999). How Well Constrained Are Well-Constrained T , B , and P axes in Moment Tensor Catalogs?. Journal of Geophysical Research: Solid Earth, 104(B3), 4901–4910.
  • Ganas, A., Ganas, A., Roumelioti, Z. ve Chousianitis, K. (2012). Static Stress Transfer From the May 20, 2012, M 6.1 Emilia-Romagna (Northern Italy) Earthquake Using a Co-seismic Slip Distribution Model. Annals of Geophysics, 55(4), 655–662.
  • Gordon, R. G. (1998). The Plate Tectonic Approximation: Plate Nonrigidity, Diffuse Plate Boundaries, and Global Plate Reconstructions. Annual Review of Earth and Planetary Sciences, 26(1), 615–642.
  • Harris, R. A. ve Simpson, R. W. (1992). Changes in Static Stress on Southern California Faults After the 1992 Landers Earthquake. Nature, 360(6401), 251–254.
  • Hubert-Ferrari, A., Armijo, R., King, G., Meyer, B. ve Barka, A. (2002). Morphology, Displacement, and Slip Rates Along the North Anatolian Fault, Turkey. Journal of Geophysical Research: Solid Earth, 107(B10), 2235–2268.
  • King, G. C. P. ve Cocco, M. (2001). Fault Interaction by Elastic Stress Changes: New Clues From Earthquake Sequences. Advances in Geophysics, 44, 1–38.
  • King Hubbert, M. ve Rubey, W. W. (1959). Role of Fluid Pressure in Mechanics of Overthrust Faulting: I. Mechanics of Fluid-Filled Porous Solids and Its Application to Overthrust Faulting. GSA Bulletin, 70(2), 115–166.
  • Kisslinger, C. (1993). The stretched exponential function as an alternative model for aftershock decay rate. Journal of Geophysical Research: Solid Earth, 98(B2), 1913– 1921.
  • Köle, M. M. (2006). Çankırı İli için Deprem Olasılıksal Tahmini. Çankırı Karatekin Sosyal Bilimler Enstitüsü Dergisi, 7(1), 455–470.
  • Lin, J. ve Stein, R. S. (2004). Stress Triggering in Thrust and Subduction Earthquakes and Stress Interaction Between the Southern San Andreas and Nearby Thrust And Strike-Slip Faults. Journal of Geophysical Research: Solid Earth, 109(B2), 1–19.
  • Mallman, E. P., ve Parsons, T. (2008). A Global Search for Stress Shadows. Journal of Geophysical Research, 113(B12), 1–16.
  • McCloskey, J., Nalbant, S. S. ve Steacy, S. (2005). Earthquake Risk from Co-seismic Stress. Nature, 434(7031), 291–291.
  • Nostro, C., Cocco, M. ve Belardinelli, M. E. (1997). Static Stress Changes in Extensional Regimes: An Application to Southern Apennines (Italy). Bulletin of the Seismological Society of America, 87(1), 234–248.
  • Okada, Y. (1992). Internal Deformation due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.
  • Omori, F. (1902). Note on the after-shocks of the Mino-Owari earthquake of Oct. 28th, 1891. Publications of the Earthquake Investigation Committee in foreign languages, 4, 13–24.
  • Öztürk, S., Çınar, H., Bayrak, Y., Karslı, H. ve Daniel, G. (2008). Properties of the Aftershock Sequences of the 2003 Bingöl, M D = 6.4, (Turkey) Earthquake. Pure and Applied Geophysics, 165(2), 349–371.
  • Parsons, T. (2002). Global Omori Law Decay of Triggered Earthquakes: Large Aftershocks Outside the Classical Aftershock Zone. Journal of Geophysical Research: Solid Earth, 107(B9), 9–1.
  • Parsons, T., ve Dreger, D. S. (2000). Static-Stress Impact of the 1992 Landers Earthquake Sequence on Nucleation and Slip at the Site of the 1999 M=7.1 Hector Mine Earthquake, Southern California. Geophysical Research Letters, 27(13), 1949–1952.
  • Pollitz, F. F. ve Sacks, S. (2002). Stress Triggering of the 1999 Hector Mine Earthquake by Transient Deformation Following the 1992 Landers Earthquake. Bulletin of the Seismological Society of America, 92(4), 1487–1496.
  • Reasenberg, P. A. ve Jones, L. M. (1989). Earthquake Hazard After a Mainshock in California. Science, 243(4895), 1173–1176.
  • Reasenberg, P. A. ve Simpson, R. W. (1992). Response of Regional Seismicity to the Static Stress Change Produced by the Loma Prieta Earthquake. Science, 255(5052), 1687–1690.
  • Savage, M. K. ve Meyer, R. P. (1985). Aftershocks of an M = 4.2 earthquake in Hawaii and comparison with long-term studies of the same volume. Bulletin of the Seismological Society of America, 75(3), 759–777.
  • Scholz, C. H. (2019). The Mechanics of Earthquakes and Faulting. London:Cambridge Uni. Press.
  • Shcherbakov, R., Turcotte, D. L. ve Rundle, J. B. (2005). Aftershock Statistics. Pure and Applied Geophysics, 162(6), 1051–1076.
  • Steacy, S., Gomberg, J. ve Cocco, M. (2005). Introduction to Special Section: Stress Transfer, Earthquake Triggering, and Time-Dependent Seismic Hazard. Journal of Geophysical Research, 110(B5), 1–12.
  • Stein, R. S., King, G. C. P. ve Lin, J. (1994). Stress Triggering of the 1994 M = 6.7 Northridge, California, Earthquake by Its Predecessors. Science, 265(5177), 1432–1435.
  • Stein, R. (1999). The Role of Stress Transfer in Earthquake Occurrence. Nature, 402(6762), 605–609.
  • Stein, R. (2003). Earthquake Conversations. Scientific American, 288(1), 72–79.
  • Stein, R., Barka, A. ve Dieterich, J. H. (1997). Progressive Failure on the North Anatolian Fault Since 1939 by Earthquake Stress Triggering. Geophysical Journal International, 128(3), 594–604.
  • Sunbul, F. (2016). Assessing the Role of Post-Seismic Viscoelastic Relaxations in Earthquake Triggering. (Yayımlanmamış Doktora Tezi). Ulster Universitesi / Coğrafya ve Çevre Bilimleri Enstitüsü, Belfast.
  • Tajima, F. ve Kanamori, H. (1985). Global Survey of Aftershock Area Expansion Patterns. Physics of the Earth and Planetary Interiors, 40(2), 77–134.
  • Toda, S., Stein, R. S. ve Lin, J. (2011). Widespread Seismicity Excitation Throughout Central Japan Following the 2011 M=9.0 Tohoku Earthquake and Its Interpretation by Coulomb Stress Transfer. Geophysical Research Letters, 38(7), 1–5.
  • Toda, S., Stein, R. S., Reasenberg, P. A., Dieterich, J. H. ve Yoshida, A. (1998). Stress Transferred by the 1995 M w= 6.9 Kobe, Japan, Shock: Effect on Aftershocks and Future Earthquake Probabilities. Journal of Geophysical Research: Solid Earth, 103(B10), 24543–24565.
  • Utsu, T. (1962). On the Nature of Three Alaskan Aftershock Sequences of 1957 and 1958. Bulletin of the Seismological Society of America, 52(2), 279–297.
  • Verdecchia, A., Carena, S., Pace, B. ve DuRoss, C. B. (2019). The Effect of Stress Changes on Time-Dependent Earthquake Probabilities for the Central Wasatch Fault Zone, Utah, USA. Geophysical Journal International, 219(2), 1065–1081.
  • Wang, W. H. (2004). Static Stress Transferred by the 1999 Chi-Chi, Taiwan, Earthquake: Effects on the Stability of the Surrounding Fault Systems and Aftershock Triggering with a 3D Fault-Slip Model. Bulletin of the Seismological Society of America, 91(5), 1041–1052.
  • Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., ve Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556–5564.