Assessment of Water Quality Parameters on Uzuncayır Dam Lake Using Multivariate Statistical Analysis

Bu çalışmada, Uzunçayır Baraj Gölü (Tunceli)'nün fiziko-kimyasal parametrelerini aylık periyotlarda belirlemeyi amaçladık. 2013 Mayıs - 2014 Mart periyodunca 10 istasyondan su örnekleri temin edildi. Elde edilen veriler çok değişkenli istatistiksel analiz yöntemleri (küme ve temel bileşenler analizi) ile değerlendirildi.Su sıcaklığı, pH, DO, iletkenlik ve tuzluluk Uzunçayır Baraj Gölü için istenen sınırlar kapsamındadır. Analiz sonuçları, bu baraj gölünün yüksek fosfat değerlerinden dolayı oligotrofik bir yapıya sahip olduğunu göstermiştir. Temel bileşenler analizi (PCA) göre Uzunçayır Baraj Gölü'nde farklı kirlilik seviyesi ve fiziko kimyasal özellikler gösteren istasyonlar arasındaki benzerlikler iki farklı küme halinde ortaya çıkmıştır. Verilerdeki %100 değişimi gözler önüne koyan 3 potansiyel faktör 2+ + -' tespit edilmiştir. 1. bileşende toplam değişimin %17,7'si Mg , NH4 ve NO2 den kaynaklanmaktadır. 2. ve 3 bileşenlerinanalizleri ise toplam değişimin %34,95'i tarımsal drenaj ve nutrientten; %68,2'si fiziksel parametrelerden ileri gelmektedir. Grup analizleri sonuçlarına göre 10 istasyonun yerel aktivite ve tarımsal alanlardan direk olarak etkilendiği bulunmuştur. Uzunçayır baraj gölü yüksek orandaki çözünmüş anyon ve katyonların sonucu olarak sahip olduğu toplam katı içerdiği, yüksek elektrik geçirgenliği ve yüksek pH'ından dolayı sert su gölü olarak adlandırılmaktadır. Yüzey suyu kalite yönetimine (A ve B Grupları) göre, Uzunçayır Baraj Gölü'nün yüksek kaliteli, hafif kontamine olduğu, tarımsal sulama, içme suyu desteği ile alabalık ve diğer balık türleri için uygun olduğu sonucuna varılmıştır.

Çok Değişkenli İstatistik Analizi İle Uzunçayır Baraj Gölü Su Kalitesi Parametrelerinin Değerlendirilmesi

Our aim was to determine at monthly variations physico-chemical characteristics of the water of Uzunçayır Dam Lake, Tunceli. Water samples were obtained from ten chosen stations during 2013 May- 2014 March. Data obtained were evaluated by using multivariate statistical analysis (cluster and principal component analysis). Water temperature, pH, DO, conductivity, and salinity of Uzuncayır Dam Lake were within desirable limits. The analysis showed that the Dam Lake has become an oligotrophic lake due to the high level of phosphate. Principal components (PCA) analysis revealed in two different clusters to the similarities among the stations reflected different physico-chemical properties and the level of pollution in the Dam Lake. Principal components analysis (PCA) revealed in two different clusters to the similarities among the stations which were reflected different physico-chemical properties and the level of pollution in the Dam Lake. Three potential factors were determined the explanation of 100% of the total variation of the data. In component 1, 17.7 % of all variation had Mg, NH and NO . The component 2 and 3 analyses showed that 34.95 % of all 4 2 variation stem from agricultural drainage and nutrient, from physical parameters of 68.2 %, respectively. In the analyses of cluster, one group (10 stations) was found as affected directly from the activities of domestic and agricultural land. Because of the high pH and high electrical conductivity and total solids contents which were the results of the high content of dissolved anions and cations, Uzunçayır Dam Lake is defined as a hard water lake. According to the Surface Water Quality Management (A and B group), it was concluded that Uzunçayır Dam Lake had high quality, slightly contaminated and the appropriate structure for many activities such as agricultural irrigation, drinking water supply, trout and other fish production.

Kaynakça

Adams, S., Titus, R., Pietesen, K., Tredoux, G. and Harris, C. 2001. Hydrochemical characteristic of aquifers near Sutherland in the Western Karoo. South Africa. Journal of Hydrology, 241: 91-103. doi: 10.1016/S0022-1694(00)00370-X

Andrade, E.M., Palácio, H.A.Q., Souza, I.H., Leão, R.A. and Guerreiro, M. J. 2008. Land use Effects in Groundwater Composition of an Alluvial Aquifer (Trussu River, Brazil) by Multivariate Techniques. Environmental Research. 106: 170-177. doi: 10.1016/j.envres.2007.10.008.

Ayeni, A. O. and. Soneye, A. S. O. 2013. Interpretation of surface water quality using principal components analysis and cluster analysis. Journal of Geography and Regional Planning, Vol. 6(4): 132-141. doi: 10.5897/JGRP12.087.

Bathusha, M.I. and Saseetharan. M.K. 2006. Statistical study on physico - chemical characteristics of ground water of coimbatore south zone. Indian Journal environmental Protection, 26(6), 508 - 515. doi: http://dx.doi.org/10.12944/CWE.10.2.26.

Boztuğ, D., Dere, T., Tayhan, N., Yıldırım, N., Danabaş, D., Cikcikoğlu, Y. N., Öztüfekçi, Ö. A., Danabaş, S., Ergin, C., Uslu, G. and Ünlü, G. 2012. Physico-chemical characteristics of Uzuncayir Dam Lake (Tunceli) and water quality. Adıyaman University, Journal of Science and Technology 2 (2): 93-106.

Dirican, S. 2015. Assessment of water quality using physico-chemical parameters of Çamlıgöze Dam Lake in Sivas, Turkey. Ecologia, 5 (1): 1-7. doi: 10.3923/ecologia.2015.1.7

Easton, Z.M., Gerard-marchant,P., Walter, M.T., Petrovic A.M., and Steenhuis,T.S. 2007. Identifying dissolved phosphorus source areas and predicting transport from an urban watershed using distributed hydrologic modeling. Water Resources Research, 43: 5-16. doi:10.1029/2006WR005697

EİE. 1996. 1992 Su Yılı Akım Değerleri. Ankara: EİE Genel Müdürlüğü Yayınları, No. 95-25. Helena, B., Pardo, R., Vega, M., Barrado, E., Ferna´ndez, J.M. and Ferna´ndez, L.2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Research, 34: 807-816. Doi:10.1016/S0043-1354(99)00225-0.

IEPA (Ireland Environmental Protection Agency). 2001. Parameters of Water Quality Interpretation and Standards. Environ- mental Protection Agency, Johnstown, p: 133.

Jarvie, H.P., Whitton, B.A. and Neal, C. 1998. Nitrogen and phosphorus in east coast British rivers: Speciation, sources and biological significance. Sci Total Environ 1998; 210/211: 79-109. doi:10.1016/S0048-9697(98)00109-0

Jitendra, K., Siddharth, S. and Amit, P. 2008. Water quality of Turamdih and Jaduguda uranium mines and adjacent areas, East Singhbhum, Jharkhand. J. Ecophysiol. Occup. Health, 8: 7-14.

Johnson, R.A. and Wichern, D.W. 1992. Applied multivariate statistical analysis, 3. Edn. Prentice Hall, Englewood Cliffs, NJ

Kaufman, L. and Rousseeuw, P. J. 1990. Finding groups in data: an introduction to cluster analysis. New York, Wiley.

Lee, J.Y., Cheon, J.Y., Lee, K.K., Lee, S.Y. and Lee, M.H. 2001. Statistical evaluation of geochemical parameter distribution in a ground water system contaminated with petroleum hydrocarbons. Journal of Environmental Quality, 30: 1548-1563. doi: 10.2134/jeq2001.3051548x

Liu, C.W., Lin, K. H. and Kuo, Y.M. 2003. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science. Total Environmental, 313:77-89. Doi:10.1016/S0048-9697(02)00683-6

Niemi, G. J. , Devore, P., Detenbeck,N., Taylor, D., and Lima ,A. 1990. Overview of Case Studies on Recovery of Aquatic Systems from Disturbance. Environmental Management, 14: 571-587.

Mutlu, E., Kutlu, B. and Demir, T. 2016. Assessment of Çinarli Stream (Hafik -Sivas)'S Water Quality via Physico-Chemical Methods. Turkish Journal of Agriculture - Food Science and Technology, 4(4): 267-278.

Mutlu, E., Yanik, T., Akca, İ., Kutlu, B. and Sönmez, A. S. 2015. Determining the water quality of Lake Delice ( İmranli-Sivas). Marine Science Technology Bulletin, 4(2):11-19.

Reghunath, R., Murthy, T.R.S.and Raghavan, B.R. 2002. The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Research, 36: 2437-2442. doi:10.1016/S0043-1354(01)00490-0

Saler, S. and Haykır, H. 2011. Zooplankton composition of Pulumur Stream (Tunceli-Turkey). Journal of Animal and Veterinary Advances, 10(11): 1401- 1413. doi: 10.3923/javaa.2011.1401.1403

Sickman,J.O., Zanoli, M.J., and Mann, H.L. 2007. Effects of Urbanization on Organic Carbon Loads in the Sacramento River, California. Water Resources Research, 43, 1-15. doi: 10.1029/2007WR005954

Simeonov, V., Simeonova, P. and Tsitouridou, R. 2004. Chemometric quality assessment of surface waters: two case studies. Chemical Engineer. Ecology 11: 449-469.

Simeonova, P., Simeonov, V. and Andreev, G. 2003. Water quality study of the Struma River Basin, Bulgaria (1989-1998). Central European Journal of Chemistry,1: 136-212.

Singh, K.P., Malik, A. and Sinha, S. 2005. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques: a case study. Analytica Chimica Acta, 538, 355-374. doi:10.1016/j.watres.2004.06.011

Singh, K.P., Malik, A., Mohan, D. and Sinha, S., 2004. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): a case study. Water Research, 38: 3980-3992.

Sinha, M.R., Dev, A., Prasad, A., Ghosh, M., and Tagore, R.N. 2011. Physicochemical examination and quality assessment of groundwater (Hand-Pump) around Patna main town, Bihar state, India. Journal of Chemical and Pharmaceutical Research, 3(3): 701-705.

Solaraj, G., Dhanakumar, S., Murthy, K.R. and Mohanraj, R. 2010. Water quality in select regions of Cauvery Delta River basin, southern India, with emphasis on monsoonal variation. Environmental Monitoring and Assessment, 166:435-44. doi: 10.1007/s10661-009-1013-7.

Soni, V. K., Visavadia, M., Gosai, C., Hussain, M. D., Mewada, M. S., Gor, S. and Salahuddin, K. 2013. Evaluation of physico-chemical and microbial parameters on water quality of Narmada River, India. Afr. J. Environ. Sci. Technol., 7: 496-503.

South African Water Quality Guidelines. 1996. Agricultural Use: Livestock Watering. Department of Water Affairs and Forestry, Pretoria, 2nd ed., Vol. 4.

Strickland, J.D.H. and Parsons, T.R. 1972. A practical handbook of seawater analysis, fisheries research boards of Canada. Bull, 167. Ottawa, pp: 310.

Treseder, K.K. 2008. Nitrogen Additions and Microbial Bio- mass: A Meta-analysis of Ecosystem Studies. Ecological Letter, 11: 1111-1120. doi: 10.1111/j.1461-0248.2008.01230.x.

Vega, M., Pardo, R., Barrado, E., and Deban, L. 1996. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32:3581-3592.

Vega, M., Pardo, R., Barrado, E., & Deban, L. 1998. Assessment of seasonal and polluting effects on the qualityof river water by exploratory data analysis.Water Research, 32: 3581-3592.

Wang, Y.S, Lou, Z.P., Sun, .C.C., Wu, M.L. and Han, S.H. 2006. Multivariate statistical analysis of water quality and phytoplankton characteristics in Daya Bay, China, from 1999 to 2002. Oceanologia, 48: 193-213.

Wu, M.L. and Wang, Y.S. 2007. Using chemometrics to evaluate anthropogenic effects in Daya Bay, China. Estuarine, Coastal and Shelf Science, 72:732-742. doi:10.1016/j.ecss.2006.11.032

Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C. and Bistoni, M. A. 2001. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba, Argentina). Water Research, 35: 2881-2894.

Zhao, O., Liu, S., Li, D., Z. Yang, Shikui, D., Cong, W., Zhaoling, Z.2012. Spatio-temporal variation of heavy metals in fresh water after dam construction: a case study of the Manwan Reservoir, Lancang River. Environmental Monitoring Assessment, 184:4253-4266. doi: 10.1007/s10661-011-2260-y

Kaynak Göster