Açık ve Uzaktan Öğrenmede Laboratuvar Uygulamaları

Bu çalışmada, eğitimde önemli bir yeri olan laboratuvar uygulamalarının açık ve uzaktan öğrenmedeki durumu ele alınmıştır. Açık ve uzaktan öğrenmede öğrenenlerin öğrenme kaynaklarından uzakta olması, laboratuvar uygulamaları için farklı çözümler geliştirilmesini zorunlu hale getirmiştir. Tarihsel süreç içerisinde bakıldığında laboratuvar uygulamaları gerektiren disiplinlerde uygun öğrenme çıktılarının elde edilebilmesi için çeşitli yöntemlerin kullanıldığı görülmektedir. Öğrenenlerin laboratuvar araç ve gereçleri ile fiziksel olarak etkileşim kurarak uygulamalarını gerçekleştirebildikleri yoğunlaştırılmış yüz yüze laboratuvarlar, ev deney kitleri ve mobil (gezici) laboratuvarlar; 21. yüzyıl teknolojilerinin işe koşulduğu sanal laboratuvarlar, uzak laboratuvarlar ve sanal bilişim laboratuvarları bu yöntemlerin başında gelmektedir. Çalışma kapsamında, açık ve uzaktan öğrenmede kullanılan bu laboratuvar uygulamalarının daha iyi anlaşılması için üstünlükleri ve sınırlılıkları ele alınmıştır.

Laboratory Applications in Open and Distance Learning

In this study, the practice of open and distance learning of laboratory applications which have an important place in education is discussed. The fact that learners in open and distance learning are away from learning resources has made it necessary to develop different solutions for laboratory applications. Looking at the historical process, it has been seen that various methods are used to obtain appropriate learning outputs in the disciplines that require laboratory applications. Intensive face-to-face laboratories, home experiment kits, and mobile laboratories, where learners can physically interact with and perform their laboratory instruments and equipment; Virtual laboratories, remote laboratories and virtual computing laboratories, where 21st century technologies are used, are at the forefront of these methods. Within the scope of the study, the advantages and limitations of these laboratory applications for open and distance learning are discussed.

Kaynakça

Abdel-Salam, T. M., Kauffmann, P. J., & Crossman, G. R. (2007). Are distance laboratories effective tools for technology education? American Journal of Distance Education, 21(2), 77–91. Retrieved from https://doi.org/10.1080/08923640701299041

Abdulwahed, M., & Nagy, Z. K. (2009). The impact of the virtual lab on the hands-on lab learning outcomes, a two years empirical study. In C. Kestell, S. Grainger, & J. Cheung (Eds.), Proceedings of the 20th annual conference for the Australasian Association for Engineering Education (pp. 255-260), Adelaide, Australia: The School of Mechanical Engineering, The University of Adelaide.

Al-Shamali, F., & Connors, M. (2010). Low-cost physics home laboratory. In D. Kennepohl, & L. Shaw, (Eds.), Accessible Elements: Teaching Science Online and at a Distance (pp. 131–145). Canada: AU Press.

Al-Sharif, L., Saleem, A., Ayoub, W., & Naser, M. (2011). Teaching control system principles using remote laboratories over the internet. In S. I. Ao, L. Gelman, D. W. Hukins, A. Hunter, & A. M. Korsunsky (Eds.), Proceedings of the World Congress on Engineering 2011 (pp. 1375-1379), London, U.K.

Alhalabi, B., Anandapuram, S., & Hamza, K. (2000). Real laboratories: An innovative repartee for distance learning. In Proceedings of the 4th Multiconference on Systemic, Cybernetics and Informatics, SCI2000. Orlando, USA.

Alhalabi, B., Hamza, M. K., & Humos, A. A. E. (2008). Distance education: Remote labs environment. In ASEE Middle Atlantic Annual Meet proceedings. Retrieved from https://www. asee.org/documents/sections/northeast/2008/Distance- Education-Remote-Labs-Environment.pdf

Aktan, B., Bohus, C. A., Crowl, L. A., & Shor, M. H. (1996). Distance learning applied to control engineering laboratories. IEEE Transactions on Education, 39(3), 320–326. doi:10.1109/13.538754

Anderson, T. (2010). Interactions affording distance science education. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 1–18). Edmonton: Athabasca University Press.

Arjamand, M. J., & Khattak, M. D. (2013). Virtual labs: A new horizon for localised distance education. Paper presented at the 27th Annual Conference of Asian Association of Open Universities 2013, Islamabad, Pakistan. Retrieved from http:// www.aaou2013.com/pdf/190.pdf

Averitt, S. F., Peeler, A., Schaffer, H. E., Hoit, M. I., Vouk, M. A., & Sills, E. D. (2009). NCSU’s virtual computing lab: A cloud computing solution. Computer, 42(1), 94-97, 2009. doi:10.1109/MC.2009.230

Balamuralithara, B., & Woods, P. C. (2009). Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education, 17(1), 108–118. Retrieved from https://doi.org/10.1002/cae.20186

Barnea, N., & Dori, Y. J. (1999). High-school chemistry students’ performance and gender differences in a computerized molecular modeling learning environment. Journal of Science Education and Technology, 8(4), 257–271.

Başer, M., & Durmuş, S. (2010). The effectiveness of computer supported versus real laboratory inquiry learning environments on the understanding of direct current electricity among pre-service elementary school teachers. Eurasia Journal of Mathematics, Science & Technology Education, 6(1), 47–61.

Bell, J. (1999). The biology labs on-line project: Producing educational simulations that Promote active learning. Interactive Multimedia Electronic Journal of ComputerEnhanced Learning, 1(2). Retrieved from http://imej.wfu.edu/articles/1999/2/01/ index.asp

Borgstrom, P. H., Kaiser, W. J., Chung, G., Nelson, Z., Paul, M., Stoytchev, S. M., & Ding, J. T. K. (2012). Science and engineering active learning (seal) system: A novel approach to controls laboratories. Paper presented at the 2012 ASEE Annual Conference and Exposition, San Antonio, Texas. Retrieved from https://peer.asee.org/21900

Brewer, S. E., Cinel, B., Harrison, M., & Mohr, C. L. (2013). First year chemistry laboratory courses for distance learners: Development and transfer credit acceptance. International Review of Research in Open and Distance Learning, 14(3), 488–507.

Burd, S. D., Seazzu, A. F., & Conway, C. (2009). Virtual computing laboratories: A case study with comparisons to physical computing laboratories. Journal of Information Technology Education: Innovations in Practice, 8, 55–78. Retrieved from http://jite.org/documents/Vol8/JITEv8IIP055-078Burd693.pdf

Campbell, J. O., Bourne, J. R., Mosterman, P. J., & Brodersen, A. J. (2002). The effectiveness of learning simulations for electronic laboratories. Journal of Engineering Education, 91(1), 81–87. Retrieved from https://doi.org/10.1002/j.2168-9830.2002. tb00675.x

Chaturvedi, S. K., & Dharwadkar, K. A. (2011). Simulation and visualization enhanced engineering education – development and ımplementation of virtual experiments in a laboratory course. In J. Bernardino, & J. C. Quadrado, (Eds.), 1st World Engineering Education Flash Week (WEE2011) (pp. 933-942), Lisbon, Portugal.

Cmuk, D., Mutapcic, T., & Zoino, F. (2006). Remote versus classical laboratory in electronic measurements teaching - effectiveness testing. Paper presented at the XVIII IMEKO World Congress, Rio de Janeiro, Brazil. Retrieved from http://bib.irb.hr/ datoteka/273019.IMEKO_Cmuk_00517_.pdf

Cooper, M. (2005). Remote laboratories in teaching and learning – issues impinging on widespread adoption in science and engineering education. International Journal of Online Engineering (iJOE), 1(1).

Corter, J. E., Nickerson, J. V., Esche, S. K., & Chassapis, C. (2004). Remote versus hands-on labs: A comparative study. In 34th Annual Frontiers in Education, 2004 (pp. F1G-17-21), Savannah, GA, USA. Retrieved from https://doi.org/10.1109/ FIE.2004.1408586

Corter, J. E., Nickerson, J. V., Esche, S. K., Chassapis, C., Im, S., & Ma, J. (2007). Constructing reality: A study of remote, hands-on, and simulated laboratories. ACM Transactions on Computer- Human Interaction (TOCHI), 14(2).

Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and learning outcomes from remotelyoperated, simulated, and hands-on student laboratories. Computers & Education, 57(3), 2054–2067.

Couture, M. (2004). Realism in the design process and credibility of a simulation-based virtual laboratory. Journal of Computer Assisted Learning, 20(1), 40–49. Retrieved from https://doi. org/10.1111/j.1365-2729.2004.00064.x

Dalgarno, B. (2002). The potential of 3D virtual learning environments: A constructivist analysis. Electronic Journal of Instructional Science and Technology, 5(2). Retrieved from https://www.researchgate.net/publication/216458729_ The_Potential_of_3D_Virtual_Learning_Environments_A_ Constructivist_Analysis

Dalgarno, B., Bishop, A. G., & Bedgood-Jr., D. R. (2003). The potential of virtual laboratories for distance education science teaching: Reflections from the development and evaluation of a virtual chemistry laboratory. In K. Placing, (Ed.), Proceedings of Improving Learning Outcomes Through Flexible Science Teaching (pp. 90-95), Sydney, Australia. Retrieved from http:// openjournals.library.usyd.edu.au/index.php/IISME/articl0e/ view/6527

Doiron, J. B. (2009). Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class (PhD Thesis). Retrieved from ProQuest Dissertations and Theses database (UMI No. 3344919).

Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., & Reid, S. (2005a). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics - Physics Education Research, 1(1), 1- 8. Retrieved from https://doi.org/10.1103/PhysRevSTPER. 1.010103

Finkelstein, N. D., Perkins, K. K., Adams, W., Kohl, P., & Podolefsky, N. (2005b). Can computer simulations replace real equipment in undergraduate laboratories? In J. Marx, P. Heron, & S. Franklin, (Eds.), Physics Education Research Conference Proceedings (pp. 101-104). Sacramento, California.

Fozdar, B. I., Kumar, L. S., & Kannan, S. (2006). A survey of a study on the reasons responsible for student dropout from the bachelor of science programme at Indira Gandhi National Open University. International Review of Research in Open and Distance Learning, 7(3). Retrieved from https://doi. org/10.19173/irrodl.v7i3.291

Gercek, G., & Saleem, N. (2008). Transforming traditional labs into virtual computing labs for distance education. International Journal of Online Engineering, 4(1), 46–51.

Gröber, S., Vetter, M., Eckert, B., & Jodl, H. J. (2007). Experimenting from a distance-remotely controlled laboratory (RCL). European Journal of Physics, 28(3), 127–141. https://doi. org/10.1088/0143-0807/28/3/S12

Hall, T. M. (2000). Using simulation software for electronics engineering technology laboratory instruction. Paper presented at the American Society for Engineering Education Annual Conference & Exposition. St. Louis, Missouri.

Hampton, C. (2002). Teaching practical skills. In A. K. Mishra, & J. Bartram, (Eds.), Perspectives on distance education skills development through distance education (pp. 83–91), Vancouver: The Commonwealth of Learning.

Hawkins, I., & Phelps, A. J. (2013). Virtual laboratory vs. traditional laboratory: Which is more effective for teaching electrochemistry? Chemistry Education Research and Practice, 14(4),516–523. Retrieved from https://doi.org/10.1039/ c3rp00070b

Hofstein, A., & Lunetta, V. N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of Educational Research, 52(2), 201–217.

Holzinger, A., Kickmeier-Rust, M. D., Wassertheurer, S., & Hessinger, M. (2009). Learning performance with interactive simulations in medical education: Lessons learned from results of learning complex physiological models with the HAEMOdynamics SIMulator. Computers & Education, 52(2), 292–301.

Hsu, Y. S., & Thomas, R. A. (2002). The impacts of a web-aided instructional simulation on science learning. International Journal of Science Education, 24(9), 955–979. Retrieved from https://doi.org/10.1080/09500690110095258

Islam, M. T. (2010). Challenges and opportunities for teaching laboratory sciences at a distance in a developing country. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 213–234), Edmonton: Athabasca University Press.

Jara, C. A., Candelas, F. A., Puente, S. T., & Torres, F. (2011). Hands-on experiences of undergraduate students in automatics and robotics using a virtual and remote laboratory. Computers & Education, 57(4), 2451–2461.

Javidi, G. (2004). A comparison of traditional physical laboratory and computer simulated laboratory experiences in relation to engineering undergraduate students’ conceptual understandings of a communication systems topic. Unpublished PhD Thesis. Retrieved from http://scholarcommons.usf.edu/ etd/2936

Kaba, A. U. (2012). Uzaktan fen eğitiminde destek materyal olarak sanal laboratuvar uygulamalarının etkliliği (Unpublished master thesis). Anadolu Üniversitesi, Eskişehir, Türkiye.

Kamlaskar, C. H. (2007). Multimedia simulation for electronics laboratory activity in India. Asian Journal of Distance Education, 5(3), 33–45.

Kamlaskar, C. H. (2009). Assessing effectiveness of interactive electronics lab simulation: Learner’s perspective. Turkish Online Journal of Distance Education, 10(1), 193–209. Retrieved from http://dergipark.gov.tr/download/article-file/156170

Kara, A., Ozbek, M. E., Cagiltay, N. E., & Aydin, E. (2011). Maintenance, sustainability and extendibility in virtual and remote laboratories. Procedia - Social and Behavioral Sciences, 28, 722–728. Retrieved from https://doi.org/10.1016/j. sbspro.2011.11.134

Kennepohl, D. (2007). Using home-laboratory kits to teach general chemistry. Chemistry Education Research and Practice, 8(3), 337–346. Retrieved from https://doi.org/10.1039/ b7rp90008b

Kennepohl, D. (2010). Remote control teaching laboratories and practicals. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 167–187). Edmonton: Athabasca University Press.

Kennepohl, D. K. (2013). Learning from blended chemistry laboratories. In S. Iyer (Ed.), 2013 IEEE Fifth International Conference on Technology for Education (pp. 135-138), Kharagpur, West Bengal, India. Retrieved from https://doi.org/10.1109/ T4E.2013.40

Kennepohl, D., & Last, A. M. (2000). Teaching chemistry at Canada’s Open University. Distance Education, 21(1), 183–197. Retrieved from https://doi.org/10.1080/0158791000210111

Kennepohl, D., & Shaw, L. (2010). Accessible elements: Teaching science online and at a distance. Edmonton: AU Press.

Lammi, M. D. (2009). Student achievement and affective traits in electrical engineering laboratories using traditional and computer-based instrumentation (Unpublished Master thesis). Retrieved from https://digitalcommons.usu.edu/etd/228

Lang, J. (2012). Comparative study of hands-on and remote physics labs for first year university level physics students. Transformative Dialogues: Teaching & Learning Journal, 6(1), 1–25.

Lindsay, E. D., & Good, M. C. (2005). Effects of laboratory access modes upon learning outcomes. IEEE Transactions on Education, 48(4), 619–631.

Lyall, R., & Patti, A. F. (2010). Taking the chemistry experience home - home experiments or “kitchen chemistry.” In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 83–108). Edmonton: Athabasca University Press.

Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys, 38(3), 1–24.

Malaric, R., Jurcevic, M., Hegedus, H., Cmuk, D., & Mostarac, P. (2008). Electrical measurements student laboratory-replacing hands-on with remote and virtual experiments. International Journal of Electrical Engineering Education, 45(4), 299–309. Martínez-Jiménez, P., Pontes-Pedrajas, A., Climent-Bellido, M. S., &

Polo, J. (2003). Learning in chemistry with virtual laboratories. Journal of Chemical Education, 80(3), 346–352. Meester, M. A. M., & Kirschner, P. A. (1995). Practical work at the Open University of the Netherlands. Journal of Science Education and Technology, 4(2), 127–140.

Moore, M. G. (2010). Foreword. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance. Edmonton: Athabasca University Press.

Mosse, J., & Wright, W. (2010). Acquisition of laboratory skills by on-campus and distance education students. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 109–129). Edmonton: Athabasca University Press.

Muthusamy, K., Kumar, P. R., & Latif, S. R. S. A. (2005). Virtual laboratories in engineering education. Asian Journal of Distance Education, 3(2), 55–58.

Nedic, Z., Machotka, J., & Nafalski, A. (2003). Remote laboratories versus virtual and real laboratories. In 33rd ASEE/IEEE Frontiers in Education Conference (pp. T3E-1-T3E-6), Westminster, CO, USA. Retrieved from https://doi.org/10.1109/FIE.2003. 1263343

Ogot, M., Elliott, G., & Glumac, N. (2003). An assessment of in-person and remotely operated laboratories. Journal of Engineering Education, 92(1), 57–64. Retrieved from https:// doi.org/10.1002/j.2168-9830.2003.tb00738.x

Oser, R. R. (2013). Effectiveness of virtual laboratories in terms of achievement, attitudes, and learning environment among high school science students (Unpublished PhD thesis). Retrieved from https://espace.curtin.edu.au/handle/ 20.500.11937/2328

Özkul, A. E. (2003). E-öğrenme ve mühendislik eğitimi. TMOB Elektrik Mühendisleri Odası Dergisi, 41(419), 18–27.

Reck, R. M., Sreenivas, R. S., & Loui, M. C. (2015). Assessing an affordable and portable laboratory kit in an undergraduate control systems course. In 2015 IEEE Frontiers in Education Conference (FIE) (pp. 1-4), El Paso, Texas. Retrieved from https://doi.org/10.1109/FIE.2015.7344319

Sahin, S. (2006). Computer simulations in science education: Implications for distance education. Turkish Online Journal of Distance Education, 7(4), 132–146.

Sarik, J., & Kymissis, I. (2010). Lab kits using the Arduino prototyping platform. In 2010 IEEE Frontiers in Education Conference (FIE) (pp. T3C-1-T3C-5), Washington, D. C. Retrieved from https:// doi.org/10.1109/FIE.2010.5673417

Shaw, L., & Carmichael, R. (2010). Needs, costs, and accessibility of de science lab programs. In D. Kennepohl, & L. Shaw (Eds.), Accessible elements: Teaching science online and at a distance (pp. 191–211). Edmonton: Athabasca University Press.

Sicker, D. C., Lookabaugh, T., Santos, J., & Barnes, F. (2005). Assessing the effectiveness of remote networking laboratories. In Proceedings Frontiers in Education 35th Annual Conference (pp. S3F-7- S3F-12), Indianapolis, IN. Retrieved from https:// doi.org/10.1109/FIE.2005.1612279

Sonnenwald, D. H., Whitton, M. C., & Maglaughlin, K. L. (2003). Evaluating a scientific collaboratory: Results of a controlled experiment. ACM Transactions on Computer-Human Interaction, 10(2), 150–176.

Stefanovic, M. (2013). The objectives, architectures and effects of distance learning laboratories for industrial engineering education. Computers & Education, 69, 250–262. Retrieved from https://doi.org/10.1016/j.compedu.2013.07.011

Stefanovic, M., Tadic, D., Nestic, S., & Djordjevic, A. (2013). An assessment of distance learning laboratory objectives for control engineering education. Computer Applications in Engineering Education, 23(2), 191–202. Retrieved from https://doi.org/10.1002/cae.21589

Stuckey-Mickell, T. A., & Stuckey-Danner, B. D. (2007). Virtual labs in the online biology course: Student perceptions of effectiveness and usability. MERLOT Journal of Online Learning and Teaching, 3(2), 105–111.

Tatlı, Z., & Ayas, A. (2012). Virtual chemistry laboratory: Effect of constructivist learning environment. Turkish Online Journal of Distance Education, 13(1), 183–199. Retrieved from http:// dergipark.gov.tr/download/article-file/155895

Tüysüz, C. (2010). The effect of the virtual laboratory on students’ achievement and attitude in chemistry. International Online Journal of Educational Sciences, 2(1), 37–53.

Wedemeyer, C. A., & Najem, C. (1969). AIM: From concept to reality. The articulated ınstructional media program at Wisconsin. Syracuse, NY: Center for the Study of Liberal Education for Adults, Syracuse University.

Zacharia, Z., & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of Physics. American Journal of Physics, 71, 618–629.

Kaynak Göster

Yükseköğretim ve Bilim Dergisi
  • ISSN: 2146-5959
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2011

786145

Sayıdaki Diğer Makaleler

Türk Halk Müziğindeki Doğal Çok Sesliliğin Müzik Eğitimindeki Yansımaları

GÖKALP PARASIZ, OZAN GÜLÜM

Bilgisayar Programlama Derslerinde Öğrenme Motivasyonu Ölçeğinin Türkçe Uyarlaması: Geçerlilik ve Güvenilirlik Çalışması

Ümmühan Avcı, HALİL ERSOY

Eğitim Fakültesi Akademisyen ve Öğrencilerinin Üniversite Psikolojik Danışma Birimine Yönelik Görüşleri

GÖZDE ŞENSOY, Hande AKIMAN, Kemal BALKAN, Adil KAVAL, Abdullah SEVİNÇ, Gürkan YEĞİNTÜRK, ASLI UZ BAŞ

Bir Anket Çalışması: İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi’nde Topografik Anatomi Uygulama Derslerinin ve Sınavının Değerlendirilmesi

Zennure ADIGÜZEL ŞAHİN, Göktuğ BENLİ, MEHMET SELMAN DEMİRCİ, Fatma Güler KAHRAMAN YILDIRIM

Akademisyenlerin Mantıksal Düşünmeye İlişkin Algıları

DİLEK BAŞERER, EKREM ZİYA DUMAN

Otantik Olmanın Duyuşsal İyi Oluşu (Pozitif-Negatif Duygu Durumu) Yordama Gücü: Türk ve İngiliz Üniversite Öğrencileri Arasında Otantik Olma ve Pozitif-Negatif Duygu Durumu

Behire KUYUMCU, Asude KABASAKALOĞLU

Romantik İlişkilerde Problem Çözme Becerilerinin Empati ve Mental İyi Oluş Açısından İncelenmesi

ÖZGÜR SALİH KAYA

The Influence of Academicians’ Individual Professional Role in Formation of Academic Culture

KAMİL YILDIRIM

A Matter of Controversy: Teaching New L2 Words in Semantic Sets or Unrelated Sets

Mustafa SARIOĞLU

Üniversite Öğrencilerinin Engelli Bireylere Yönelik Tutumları ve Sosyal Beğenirlik Düzeyleri

ZÜMRÜT GEDİK, HURİYE TOKER