NEET’İN MAKROEKONOMİK BELİRLEYİCİLERİ: KIRILGAN BEŞLİ ÜLKELERİ VE RUSYA İÇİN BİR PANEL VERİ ANALİZİ

Bu çalışmanın amacı, 2005-2018 yılları arasında Kırılgan Beşli ülkeleri olarak kabul edilen Brezilya, Hindistan, Endonezya, Güney Afrika ve Türkiye ile Rusya’nın Ne Eğitimde, Ne İstihdamda (NEET) yer alan nüfusu üzerindeki makroekonomik göstergelerin etkisini panel veri analizi yöntemi ile araştırmaktır. Araştırmada NEET’in belirleyicilerini açıklamak için kişi başına düşen Gayrisafi Yurtiçi Hasıla, Enflasyon Oranı (Tüketici fiyatları), Gayrisafi Milli Gelir içindeki eğitim harcamaları için yapılan tasarruf (%), Doğrudan Yabancı Yatırımlar ve İnsani Kalkınma Endeksi verileri kullanılmıştır. Değişkenler arasındaki ilişki panel veri yöntemleri Sabit Etkiler Modeli kullanılarak analiz edilmiştir. Bu nedenle Driscoll ve Kraay Tahmincisi- Tek Yönlü Sabit Etkiler Modeli bulgularına göre “HDI, GDP, FDI ve S” değişkenlerinin bağımlı değişken olan NEET üzerinde istatistiksel olarak anlamlı etki etmektedir. HDI, FDI GDP ve S’de meydana gelen %1’lik bir artış, NEET üzerinde sırasıyla %2,14’lük ve %0.03’lük bir artışa; %0.77 ve %0.38’lik bir azalışa sebep olmaktadır. Artıkların Korelasyon Matrisi bulguları ise ülkeler arasında korelasyonun Hindistan ve Brezilya arasında en yüksek, Rusya ve Endonezya arasında ise en düşük düzeyde olduğunu ortaya koymuştur. Araştırma sonuçlarına göre kırılgan beşli ülkelerinde NEET sorunun azaltılması için insani gelişim gösterge ihtiyaçları ve doğrudan yabancı yatırım ilgisinin kırsal kalkınma bölgelerine yönlendirilmesi gerekmektedir.

THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA

This study aims to investigate the impact of macroeconomic indicators on Not in Education, Employment, or Training (NEET) population in Brazil, India, Indonesia, South Africa, and Turkey accepted as Fragile Five countries and Russia 2005-2018 period by using the panel data analysis method. Gross Domestic Product Per Capita (GDP), Inflation Rate (Consumer prices, INF), Adjusted savings for education expenditure (% of Gross National Income, S), Foreign Direct Investment (FDI), HDI index data were used for explaining the NEET for selected countries. The relationship between variables was analyzed using the Panel Data Methods via Fixed-Effects Model. Therefore, according to the findings of Driscoll and Kraay Estimator- One-Way Fixed Effects Model, "HDI, GDP, FDI and S" variables have a statistically significant effect on NEET as the dependent variable. According to findings, while a 1% increase in HDI and FDI respectively give rise an increase of 2.14% and 0.03% on NEET, a 1% increase in GDP, and S resulted in a decrease of 0.77% and 0.38% on NEET. The findings of the correlation matrix of residuals revealed that the correlation between countries was highest between India and Brazil and the lowest between Russia and Indonesia. According to preliminary results requirement for human development indicators and attraction to FDI should be directed to rural areas for reducing the NEET rates in FFC.

Kaynakça

Akinyemi, B. E., & Mushunje, A. (2017). Born free but 'NEET': Determinants of rural youth's participation in agricultural activities in eastern cape province, South Africa. International Journal of Applied Business and Economic Research. 15:521-533.

Akkuş, Ö., & Topuz, S. G. (2019). Validity of Unemployment Hysteresis: The Most Fragile Five Developing Countries. Sosyoekonomi. https://doi.org/10.17233/sosyoekonomi.2019.01.04

Ayhan, F. (2016). Youth Unemployment As A Growing Global Threat. Actual Problems of Economics, 7(181), 262-269

Ayhan, F. (2019). Türkiye Ekonomisinde İşsizliğin Belirleyicisi olan Temel Makroekonomık Değişkenlerin Tespitine İlişkin Bır Uygulama. Uluslararası Iktisadi ve İdari İncelemeler Dergisi, 25, 235-252., DOI: 10.18092/ulikidince.567458

Bal-Domańska, B., & Sobczak, E. (2020). Econometric Assessment of the Relation Between the Situation of Youth on the Labour Market and the Macroeconomic Factors Among the Eu Countries. Vision 2025: Education Excellence and Management of Innovations through Sustainable Economic Competitive Advantage.

Bruno, G. S. F., Marelli, E., & Signorelli, M. (2014). The rise of NEET and youth unemployment in EU regions after the crisis. Comparative Economic Studies. https://doi.org/10.1057/ces.2014.27

Business Insider (2013) MORGAN STANLEY PRESENTS :' The Fragile Five' — The Most Troubled Currencies In Emerging Markets. 1–12. Date of Access: 21.04.2020

Caroleo, F. E., Rocca, A., Mazzocchi, P., & Quintano, C. (2020). Being NEET in Europe Before and After the Economic Crisis: An Analysis of the Micro and Macro Determinants. In Social Indicators Research (Vol. 149, Issue 3). Springer Netherlands. https://doi.org/10.1007/s11205-020-02270-6

Craigwell, R. (2006). Foreign direct investment and employment in the English and Dutch-speaking Caribbean. ILO Subregional Office for the Caribbean.

Cooper, R. N., Bloom, D. E., Canning, D., & Sevilla, J. (2003). The Demographic Dividend: A New Perspective on the Economic Consequences of Population Change. Foreign Affairs. https://doi.org/10.2307/20033592

Çolak, O., & Alakbarov, N. (2017). Does Foreign Direct Investments Contribute To Employment? Empirical Approach for the Commonwealth of Independent States. Bilig, 83, 147-169.

de Arruda, P. L., & Slingsby, A. K. (2014). Social programmes and job promotion for the BRICS youth (No. 130). International Policy Centre for Inclusive Growth.

Dias, T. S., & Vasconcelos, A. M. N. (2020). Heterogeneity among Young People Neither in Employment Nor in Education in Brazil. Annals of the American Academy of Political and Social Science. https://doi.org/10.1177/0002716220913234

Drakaki, M., Papadakis, N., Kyridis, A., & Papargyris, A. (2014). Who's the Greek Neet? Neets' profile in Greece: parameters, trends and common characteristics of a heterogeneous group. International Journal of Humanities and Social Science, 4(6), 240-254.

Driscoll, J. D. & KRAAY, A. C. (1998) Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data, The Review of Economics and Statistics, 10(4), 549-560.

Hausman, J. A. (1978), Specification Tests in Econometrics, Econometrica: Journal of the Econometric Society, 46(6), 1251-1271.

Holte, B. H., Swart, I., & Hiilamo, H. (2019). The NEET concept in comparative youth research: the Nordic countries and South Africa. Journal of Youth Studies. https://doi.org/10.1080/13676261.2018.1496406

Işık, V. (2016). Türkiye’de Genç İşsizliği ve Genç Nüfusta Atalet. Hak İş Uluslararası Emek ve Toplum Dergisi, 5(11), 130-145.

İzgi, B. B., & Konu, A. (2018). Genç işsizliğini belirleyen unsurlar: BRICS ülkeleri ile Türkiye Panel ARDL Uygulaması. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21(1), 95-112.

Kılıç, Y. (2014). Young People in Turkey who are Not in Education, Employment or Training (NEET). Ted Eğitim ve Bilim. https://doi.org/10.15390/eb.2014.3094

Kırca, M., & Canbay, Ş. (2020). Kırılgan Beşli Ülkeleri için Phillips Eğrisi Analizi. İktisadi İdari ve Siyasal Araştırmalar Dergisi. https://doi.org/10.25204/iktisad.717391

Kovrova, I., & Lyon, S. (2012). NEET Youth Dynamics in Indonesia and Brazil: A Cohort Analysis. Understanding Children's Work (UCW) Project - UNICEF, Rome, Italy (2012) iii + 1-22.

Kraak, A. (2013). State failure in dealing with the NEET problem in South Africa: Which way forward? Research in Post-Compulsory Education. https://doi.org/10.1080/13596748.2013.755819

Kumar, P., Jain, V. K., Pareek, K. S., Rai, S. K., & Chaturvedi, B. K. (2019). Econometric Estimation of the Relationship between Unemployment Rate, Economic Growth, and Information and Communication Technology in BRICS Countries. In The Stances of e-Government Policies. https://doi.org/10.1201/9780203731451-9

Maddala, G.S. , Trost, R.P. , Li, H., & Joutz, F. (1997). Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators. Journal of Business & Economic Statistics. 15(1): 90-100.

Meyer, N., & Meyer, D. (2017). An Econometric Analysis of Entrepreneurial Activity, Economic Growth and Employment: The Case of the BRICS countries. International Journal of Economic Perspectives.

O'Higgins, N. (2020). Young People Not In Employment, Education Or Training, ILO/SIDA Partnership On Employment. 10.13140/RG.2.2.25339.87847.

Okun, A. M. (1962). Potential GNP, its measurement and significance. Business and Economics Statistics Section of the American Statistical Association.

Pattinasarany, I. R. I. (2019). Not in Employment, Education or Training (NEET) Among the Youth in Indonesia: The Effects of Social Activities, Access to Information, and Language Skills on NEET Youth. MASYARAKAT: Jurnal Sosiologi. https://doi.org/10.7454/mjs.v24i1.10308

Pehlivanoğlu, F. A., & Tanga, M. (2016). An Analysis on the Validity of Okun's Law: Case of Turkey and BRICS 31 An Analysis on the Validity of Okun's Law: Case of Turkey and BRICS 1. International Journal of Economic Studies.

Pesaran, M. H. (2004). General Diagnostic Tests for Cross Section Dependence in Panels. University of Cambridge, Faculty of Economics. Cambridge WP 0435 in Economics.

Quintano, C., Mazzocchi, P., & Rocca, A. (2018). The determinants of Italian NEETs and the effects of the economic crisis. Genus, 74, 5. https://doi.org/10.1186/s41118-018-0031-0

Rodriguez-Modroño, P. (2019). Youth unemployment, NEETs and structural inequality in Spain. International Journal of Manpower. https://doi.org/10.1108/IJM-03-2018-0098

Tadjoeddin, M. (2015). Spatial Dimensions of Key Employment Outcomes in Indonesia. Journal of Comparative Asian Development. 14. 466-509. 10.1080/15339114.2015.1096552.

Schmid, G. (2015). Youth unemployment in India: From a European and transitional labour market point of view, IZA Policy Paper, No. 95, Institute for the Study of Labor (IZA), Bonn

Shirasu, M. R., & de Albuquerque E Arraes, R. (2020). Evaluation of the economic costs associated to the neet youth in Brazil. Revista de Economia Politica. https://doi.org/10.1590/0101-31572020-2902

Susanlı, Z. B. (2016). Understanding The NEET in Turkey. Eurasian Journal of Economics and Finance. https://doi.org/10.15604/ejef.2016.04.02.004

OECD (2016). The NEET challenge: What can be done for jobless and disengaged youth? (2016). https://doi.org/10.1787/soc_glance-2016-4-en

OECD (2020), OECD Labour Force Statistics 2020, OECD Publishing, Paris, https://doi.org/10.1787/5842cc7f-en.

Vancea, M., & Utzet, M. (2018). School-to-work transition: the case of Spanish NEETs. Journal of Youth Studies. https://doi.org/10.1080/13676261.2017.1421313

Varshavskaia, E. I. (2017). Russian NEET Youth. Sociological Research, 56(6), 389–403. https://doi.org/10.1080/10610154.2017.1407589

Yerdelen Tatoğlu, F. (2013), Panel Veri Ekonometrisi: Stata Uygulamalı, Beta Yayınevi, 2. Baskı, İstanbul

Yüksel, A. R. (2020). Türkiye'de Ne Eğitimde Ne İstihdamda Olan Gençlerin Sosyo-Demografik Yapısı ve İşgücü Piyasası ile Bağlantısı. Amme İdaresi Dergisi. 53. 103-130.

Zudina, A. (2017). What Makes Youth Become NEET? The Evidence from Russian LFS. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3060295

Zudina, A. (2018). The pathways that lead youth in NEET: The case of Russia. HSE Economic Journal. https://doi.org/10.17323/1813-8691-2018-22-2-197-227

Kaynak Göster

Bibtex @araştırma makalesi { yead822305, journal = {Yönetim ve Ekonomi Araştırmaları Dergisi}, issn = {2148-029X}, eissn = {2148-029X}, address = {}, publisher = {Bandırma Onyedi Eylül Üniversitesi}, year = {2020}, volume = {18}, pages = {173 - 189}, doi = {10.11611/yead.822305}, title = {THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA}, key = {cite}, author = {Bingöl, Ufuk} }
APA Bingöl, U . (2020). THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA . Yönetim ve Ekonomi Araştırmaları Dergisi , 18 (4) , 173-189 . DOI: 10.11611/yead.822305
MLA Bingöl, U . "THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA" . Yönetim ve Ekonomi Araştırmaları Dergisi 18 (2020 ): 173-189 <https://dergipark.org.tr/tr/pub/yead/issue/58530/822305>
Chicago Bingöl, U . "THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA". Yönetim ve Ekonomi Araştırmaları Dergisi 18 (2020 ): 173-189
RIS TY - JOUR T1 - THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA AU - Ufuk Bingöl Y1 - 2020 PY - 2020 N1 - doi: 10.11611/yead.822305 DO - 10.11611/yead.822305 T2 - Yönetim ve Ekonomi Araştırmaları Dergisi JF - Journal JO - JOR SP - 173 EP - 189 VL - 18 IS - 4 SN - 2148-029X-2148-029X M3 - doi: 10.11611/yead.822305 UR - https://doi.org/10.11611/yead.822305 Y2 - 2020 ER -
EndNote %0 Yönetim ve Ekonomi Araştırmaları Dergisi THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA %A Ufuk Bingöl %T THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA %D 2020 %J Yönetim ve Ekonomi Araştırmaları Dergisi %P 2148-029X-2148-029X %V 18 %N 4 %R doi: 10.11611/yead.822305 %U 10.11611/yead.822305
ISNAD Bingöl, Ufuk . "THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA". Yönetim ve Ekonomi Araştırmaları Dergisi 18 / 4 (Aralık 2020): 173-189 . https://doi.org/10.11611/yead.822305
AMA Bingöl U . THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA. Yönetim ve Ekonomi Araştırmaları Dergisi. 2020; 18(4): 173-189.
Vancouver Bingöl U . THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA. Yönetim ve Ekonomi Araştırmaları Dergisi. 2020; 18(4): 173-189.
IEEE U. Bingöl , "THE MACROECONOMIC DETERMINANTS OF NEET: A PANEL DATA ANALYSIS FOR FRAGILE FIVE COUNTRIES AND RUSSIA", Yönetim ve Ekonomi Araştırmaları Dergisi, c. 18, sayı. 4, ss. 173-189, Ara. 2021, doi:10.11611/yead.822305