Hipotiroidizm ve hipertiroidizmde kardiyovasküler risk faktörleri

C-reaktif protein (CRP) ve homosistein gibi parametreler kardiyovasküler risk faktörleri olarak tanımlanmış ve bu faktörlerin aterosklerotik kalp hastalığı gelişmesinde önemli rol oynayabileceği gösterilmiştir. Çalışmamızın amacı, tiroid disfonksiyonu olan hastalarda tiroid hor-monları ile kardiyovasküler risk faktörleri arasındaki ilişkiyi araştırmaktır. Hastanemiz Endokrinoloji ve Diyabet Polikliniği’ne Ocak 2009-Aralık 2009 tarihleri arasında başvurmuş, tiroid disfonksiyonu olan 102 hasta retrospektif olarak değer-lendirildi. Hastalar tiroid fonksiyon testlerine göre 3 çalışma grubuna ayrıldı. I. Grup: Hipotiroidili hastalar (n=36, 24 kadın ve 12 erkek, yaş ortalaması 53,36± 11,50), II. Grup: Ötiroid hastalar (n=35, 22 kadın ve 13 erkek, yaş ortalaması 52,02±11,70) ve III. Grup: Hipertiroidili hastalar (n=31, 19 kadın ve 12 erkek, yaş ortalaması 49,52±13,43) idi. Tüm hastalarda, total kolesterol (T-C), yüksek dansiteli lipoprotein kolesterol (HDL-C), düşük dansiteli lipoprotein kolesterol (LDL-C), trigliserid (TG), serbest T3 (FT3), serbest T4 (FT4), tiroid stimüle edici hormon (TSH), CRP ve homosistein düzeyleri ölçüldü. Ötiroid grup ile kıyaslandığında, T-C ve LDL-C düzeyle-rinin hipotiroid grupta anlamlı derecede artmış, hiper-tiroid grupta anlamlı derecede azalmış olduğu görüldü. TG düzeyleri, hipotiroid grupta, ötiroid gruptan anlamlı olarak yüksek bulundu. Hipertiroid grupta homosistein düzeyleri, hipotiroid (p=0,001) ve ötiroid grup (p=0,003) ile kıyaslandığında anlamlı düşüktü. Ayrıca homosistein düzeyleri hipotiroid grupta, ötiroid grup ile kıyaslandığında anlamlı yüksekti (p=0,002). CRP düzey-leri açısından, üç grup arasında istatistiksel olarak anlamlı fark bulunmadı (p>0,05). Sonuç olarak, homosistein, T-C ve LDL-C düzeyleri, hipotiroidizmde artmış, hipertiroidizmde azalmıştır. Hipo-tiroidizmde, homosistein, T-C ve LDL-C düzeylerindeki artışlar, kardiyovasküler riski arttırabilir. Açıklanamayan hiperhomosisteinemi ve yüksek kolesterolü olan birey-lerde, TSH düzeylerini araştırmak faydalı olabilir.

Cardiovascular risk factors in hypothyroidism and hyperthyroidism

Parameters such as C-reactive protein (CRP) and homocysteine are defined as cardiovascular risk factors and these factors may play an important role in the development of atherosclerotic heart disease. The purpose of this study was to investigate the relationship between thyroid hormone and cardiovascular risk factors in patients with thyroid dysfunction. One thousand and two patients with thyroid dysfunction were retrospectively reviewed in Endocrinology and Diabetes Clinic of our hospital between January 2009- December 2009. Patients were divided into three working groups, according to thyroid function tests. I. Group: patients with hypothyroidism (n=36, 24 females and 12 males, mean age 53.36±11:50), II. Group: euthyroid patients (n=35, 22 females and 13 males, mean age 52.02±11.70) and III. Group: patients with hyperthyroidism (n=31, 19 females and 12 males, mean age 49.52±13:43), respectively. In all patients, total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides (TG), free T3 (FT3) and free T4 (FT4), thyroid-stimulating hormone (TSH), CRP and homocysteine levels were measured. Compared with euthyroid group, TC and LDL-C levels were significantly increased in the hypothyroid group, while significantly decreased in hyperthyroid group. TG levels in the hypothyroid group, were significantly higher than euthyroid group. Homocysteine levels in hyperthyroid group were found significantly lower compared with hypothyroid (p=0.001) and the euthyroid groups (p=0.003). Moreover, homocysteine levels in hypothyroid group, were significantly higher compared with euthyroid group (p=0.002). No statistically significant difference was found between the three groups for CRP levels (p>0.05). In conclusion, the relevant parameters were increased in hypothyroidism and were decreased in hyperthyroidism. Increases in homocysteine, TC and LDL-C levels in hypothyroidism should be associated with increased cardiovascular risk. TSH may be useful to investigate in subjects with unexplained hyperhomocysteinemia and increased cholesterol.

___

  • 1. Turhan S, Sezer S, Erden G, Guctekin A, Ucar F, Ginis Z, et al. Plasma homocysteine concentrations and serum lipid profile as atherosclerotic risk factors in subclinical hypothyroidism. Annals of Saudi Medicine 2008;28: 96-101.
  • 2. Diekman MJM, Vander Put NM, Blom HJ, Tijssen JGP, Wiersinga WM. Determinants of changes in plasma homocysteine in hyperthyroidism and hypothyroidism. Clinical Endocrinology 2001;54: 197-204.
  • 3. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. The Journal Of American Medical Association 1995;274: 1049-57.
  • 4. Miner SE, Evrovski J, Cole DE. Clinical chemistry and moleculer biology of homocysteine metabolism: an update. Clinical Biochemistry 1997;30: 189-201.
  • 5. Brattstrom L, Israelsson B, Tengborn L, Hultberg B. Homocysteine, factor VII, and antithrombin III in subjects with different gene dosage for cystathionine β-synthase. Journal of Inherited Metabolic Disease 1989;12: 475-82.
  • 6. Duntas LH. Thyroid disease and lipids. Thyroid 2002;12: 267–93.
  • 7. Diekman T, Demacker PN, Kastelein JJ, Stalenhoef AF, Wiersinga WM. Increased oxidizability of low-density lipoproteins in hypothyroidism. Journal of Clinical Endocrinology and Metabolism 1998;83: 1752–5.
  • 8. Sundaram V, Hanna AN, Koneru L, Newman H.A, Falko J.M. Both hypothyroidism and hyperthyroidism enhance low density lipoprotein oxidation. Journal of Clinical Endocrinology and Metabolism 1997;82: 3421–4.
  • 9. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. British Medical Journal 2000;321: 199–204.
  • 10. Ridker P.M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003;107: 363–9.
  • 11. Tuzcu A, Bahceci M, Gokalp D, Tuzun Y, Gunes K. Subclinical hypothyroidism may be associated with elevated high-sensitive c-reactive protein (low grade inflammation) and fasting hyperinsulinemia. Endocrine Journal 2005;52: 89-94.
  • 12. Christ-Crain M, Meier C, Guglielmetti M, Huber PR, Riesen W, Staub JJ, et al. Elevated C-reactive protein and homocysteine values: cardiovascular risk factors in hypothyroidism? A cross-sectional and a double-blind, placebo-controlled trial. Atherosclerosis 2003;166: 379–86.
  • 13. Pantos C, Mourouzis I, Xinaris C, Cokkinos DV. Thyroid hormone and myocardial ischaemia. The Journal of Steroid Biochemistry and Molecular Biology 2008;109: 314-22.
  • 14. Cini G, Carpi A, Mechanick J, Cini L, Camici M, Galetta F, et al. Thyroid hormones and the cardiovascular system: pathophysiology and interventions. Biomedicine & Pharmacotherapy 2009;63: 742-53.
  • 15. Liu XQ, Rahman A, Bagdade JD, Alaupovic P, Kannan CR. Effect of thyroid hormone on plasma apolipoproteins and apoA- and apoB-containing lipoprotein particles. European Journal of Clinical Investigation 1998;28: 266-70.
  • 16. Salter AM, Hayashi R, al-Seeni M, Brown NF, Bruce J, Sorensen O, et al. Effects of hypothyroidism and high-fat feeding on mRNA concentrations for the low-density-lipoprotein receptor and on acyl-CoA: cholesterol acyltransferase activities in rat liver. Biochemical Journal 1991:276: 825-32.
  • 17. Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J, et al. DACH-LIGA homocystein (german, austrian and swiss homocysteine society): consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations. Clinical Chemistry and Laboratory Medicine 2003;41: 1392-403.
  • 18. Eikelboom JW, Hankey GJ. Associations of homocysteine, Creactive protein and cardiovascular disease in patients with renal disease. Current Opinion in Nephrology & Hypertension 2001;10(3):377-83.
  • 19. Young IS, Woodside JV. Folate and homocysteine. Current Opinion in Clinical Nutrition & Metabolic Care 2000;3: 427-32.
  • 20. Barbe F, Klein M, Chango A, Fremont S, Gerard P, Weryha G, et al. Homocysteine, folate, vitamin B12, and transcobalamins in patients undergoing successive hypo-and euthyroid states. The Journal of Clinical Endocrinology and Metabolism 2001;86: 1845-6.
  • 21. Cakal B, Cakal E, Demirbas B, Ozkaya M, Karaahmetoglu S, Serter R, et al. Homocysteine and Fibrinogen Changes with L-thyroxine in Subclinical Hypothyroid Patients. Journal of Korean Medical Science 2007;22: 431-5.
  • 22. Morris MS, Bostom AG, Jacques PF, Selhub J, Rosenberg IH. Hyperhomocysteinemia and hypercholesterolemia associated with hypothyroidism in the third US National Health and Nutrition Examination Survey. Atherosclerosis 2001;155: 195-200.
  • 23. Nair CP, Viswanathan G, Noronha JM. Folate-mediated incorporation of ring-2-carbon of histidine into nucleic acids: influence of thyroid hormone. Metabolism 1994;43: 1575-8.
  • 24. Altinova AE, Törüner FB, Aktürk M, Bukan N, Cakir N, Ayvaz G, et al. Adiponectin levels and cardiovascular risk factors in hypothyroidism and hyperthyroidism. Clinical Endocrinology 2006;65: 530-5.
Yeni Tıp Dergisi-Cover
  • ISSN: 1300-2317
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2018
  • Yayıncı: -