Soğuk Çevre Koşullarında Barındırılan İneklerde İlk Tohumlamada Gebelikle İlgili Endokrinolojik ve Metabolik Profil

Bu çalışma, soğuk koşullarda barındırılan peripartum ineklerde ilk tohumlamada endokrinolojik ve metabolik profil ile gebelik oranları arasındaki ilişkiyi araştırmak amacıyla yapılmıştır. Ortam sıcaklığı, periparturient dönem boyunca saatlik olarak kaydedilmiştir. Anti-Müllerian hormon (AMH), β-hidroksibutirik asit (BHBA), insulin benzeri büyüme faktörü 1 (ILGF-1), insülin, kortizol, malondialdehit (MDA), progesteron (P4), tiroid uyarıcı hormon (TSH), tri-iyodotironin (T3) ve tiroksin (T4) konsantrasyonlarının analizi için 26 adet Simmental inekten doğum öncesi (-14 gün), doğum günü (0 gün) ve doğum sonrası (3, 4, 6, 8, 15, 22 ve 29 gün) farklı aralıklarla kan örnekleri alınmıştır. İnekler, ilk tohumlama sonuçlarına göre geriye dönük olarak gebe (PG) ve gebe olmayan (NPG) olmak üzere iki gruba ayrılmıştır. Çadır ahırda ortalama ortam sıcaklığı −7°C ile +4°C arasında değişmiştir. İneklerin (PG ve NPG) serum AMH (2,00 ± 0,04 vs. 1,89 ± 0,04 mU/L; P < ,006), insulin (2,10 ± 0,03 vs. 2,51 ± 0,05 ng/mL; P < ,0001), MDA (49,0 ± 1,30 vs. 44,0 ± 1,2 ng/mL; P < ,001) ve P4 (44,1 ± 2,2 vs. 41,7 ± 2,1 pg/mL; P < ,002) konsantrasyonları farklıydı. Sonuç olarak, AMH ve insulin soğuk şartlarda barındırılan ineklerde gebelik oranları üzerine belirleyici bir rol oynar.

Endocrinological and Metabolic Profile in Relation to Pregnancy at the First Insemination in Cows Housed Under Cold Conditions

This study was performed to investigate the relationship between endocrinological and metabolic profiles and the pregnancy rate at the first insemination in peripartum dairy cows housed under cold conditions. Temperature inside the barn was recorded hourly during the periparturient period. Blood samples were collected before (last 14 day), on the day (0 day), and after parturition (3, 4, 6, 8, 15, 22, and 29 days) from 26 peripartum Simmental cows and analyzed for anti-Müllerian hormone, β-hydroxybutyric acid, insulin-like growth factor 1, insulin, cortisol, malondialdehyde, progesterone, thyroid-stimulating hormone, tri-iodothyronine, and thyroxine concentrations. The cows were divided into 2 groups: pregnant and non-pregnant based on results at the first insemination. The average ambient temperature ranged from −7°C to +11°C in the tent barn. Serum anti-Müllerian hormone (2.00 ± 0.04 vs. 1.89 ± 0.04 mU/L; P < .006), insulin (2.10 ± 0.03 vs. 2.51 ± 0.05 ng/mL; P < .0001), malondialdehyde (49.0 ± 1.30 vs. 44.0 ± 1.2 ng/mL; P < .001), and progesterone (44.1 ± 2.2 vs. 41.7 ± 2.1 pg/mL; P < .002) concentrations were different between pregnant and non-pregnant cows. In conclusion, anti-Müllerian hormone and insulin have a determinative role on pregnancy rate in peripartum cows housed under cold condition.

___

  • 1. Galama PJ, Ouweltjes W, Endres MI, et al. Symposium review: Future of housing for dairy cattle. J Dairy Sci. 2020;103(6):5759-5772.
  • 2. Walsh SW, Williams EJ, Evans ACO. A review of the causes of poor fertility in high milk producing dairy cows. Anim Reprod Sci. 2011;123(3-4):127-138.
  • 3. Polsky L, Von Keyserlingk MAG. Invited review: effects of heat stress on dairy cattle welfare. J Dairy Sci. 2017;100(11):8645-8657.
  • 4. Stott GH. What is animal stress and how is it measured? J Anim Sci. 1981;52(1):150-153.
  • 5. Bauman DE, Currie WB. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J Dairy Sci. 1980;63(9):1514-1529.
  • 6. Abdelnour SA, Abd El-Hack ME, Khafaga AF, Arif M, Taha AE, Noreldin AE. Stress biomarkers and proteomics alteration to thermal stress in ruminants: a review. J Therm Biol. 2019;79:120-134.
  • 7. Thatcher WW. Effects of season, climate, and temperature on reproduction and lactation1. J Dairy Sci. 1974;57(3):360-368.
  • 8. Bianca W. Physiology. Cattle in a hot environment. J Dairy Sci. 1965;32:291-345.
  • 9. NRC (National Research Council). Nutrient Requirements of Dairy Cattle. 7th ed. Washington DC: The National Academy Press; 2001:1-27.
  • 10. SAS. SAS User’s Guide: Statistics. 9th ed. Cary: Sas Institute; 2002. 11. Webster AJ. The energetic efficiency of metabolism. Proc Nutr Soc. 1981;40(1):121-128.
  • 12. Webster J, Stewart M, Rogers A, Verkerk GA. Assessment of welfare from physiological and behavioral responses of New Zealand dairy cows exposed to cold and wet conditions. Anim Welf. 2008;17:19-26.
  • 13. Mossa F, Ireland JJ. Physiology and endocrinology symposium: anti-Müllerian hormone: a biomarker for the ovarian reserve, ovarian function, and fertility in dairy cows. J Anim Sci. 2019;97(4):1446-1455.
  • 14. Ribeiro ES, Bisinotto RS, Lima FS, et al. Plasma anti-Müllerian hormone in adult dairy cows and associations with fertility. J Dairy Sci. 2014;97(11):6888-6900.
  • 15. Dutta LJ, Nath KC, Deka BC, et al. Identification and clini co-gy naeco logic al characterization of reproductive disorders in crossbred cows under field conditions. Indian J Anim Res. 2020;54(of):593-600.
  • 16. Velazquez MA, Spicer LJ, Wathes DC. The role of endocrine insulinlike growth factor-I (IGF-I) in female bovine reproduction. Domest Anim Endocrinol. 2008;35(4):325-342.
  • 17. Zulu VC, Nakao T, Sawamukai Y. Insulin-like growth factor-I as a possible hormonal mediator of nutritional regulation of reproduction in cattle. J Vet Med Sci. 2002;64(8):657-665.
  • 18. Radcliff RP, McCormack BL, Crooker BA, Lucy MC. Plasma hormones and expression of growth hormone receptor and insulin-like growth factor-I mRNA in hepatic tissue of periparturient dairy cows. J Dairy Sci. 2003;86(12):3920-3926.
  • 19. Ruprechter G, Noro M, Meotti O, et al. Endocrine and reproductive parameters in sick and healthy primiparous and multiparous dairy cows. Theriogenology. 2020;141:173-179.
  • 20. Beam SW, Butler WR. Energy balance and ovarian follicle development prior to the first ovulation postpartum in dairy cows receiving three levels of dietary fat. Biol Reprod. 1997;56(1):133-142.
  • 21. Karpova EK, Adonyeva NV, Faddeeva NV, Romanova IV, Gruntenko NE, Rauschenbach IY. Insulin affects reproduction and juvenile hormone metabolism under normal and stressful conditions in Drosophila females. Dokl Biochem Biophys. 2013;452(1):264-266.
  • 22. Spicer LJ, Alonso J, Chamberlain CS. Effects of thyroid hormones on bovine granulosa and thecal cell function in vitro: dependence on insulin and gonadotropins. J Dairy Sci. 2001;84(5):1069-1076.
  • 23. Garnsworthy PC, Fouladi-Nashta AA, Mann GE, Sinclair KD, Webb R. Effect of dietary-induced changes in plasma insulin concentrations during the early postpartum period on pregnancy rate in dairy cows. Reproduction. 2009;137(4):759-768.
  • 24. Gong JG, Lee WJ, Garnsworthy PC, Webb R. Effect of dietary-induced increases in circulating insulin concentrations during the early postpartum period on reproductive function in dairy cows. Reproduction. 2002;123(3):419-427.
  • 25. Jozwik A, Krzyzewski J, Strzalkowska N, et al. Relations between the oxidative status, mastitis, milk quality and disorders of reproductive functions in dairy cows—a review. Anim Sci Pap Rep. 2012;30:297-307.
  • 26. Lonergan P, Sánchez JM. Symposium review: Progesterone effects on early embryo development in cattle. J Dairy Sci. 2020;103(9):8698-8707.
  • 27. Wiltbank MC, Souza AH, Giordano JO, et al. Positive and negative effects of progesterone during timed AI protocols in lactating dairy cattle. Anim Reprod. 2018;9:231-241.
  • 28. Vannucchi CI, Rodrigues JA, Silva LCG, et al. Association between birth conditions and glucose and cortisol profiles of periparturient dairy cows and neonatal calves. Vet Rec. 2015;176(14):358.
  • 29. Lucy MC. Stress, strain, and pregnancy outcome in postpartum cows. Anim Reprod. 2019;16(3):455-464.
  • 30. Gwazdauskas FC. Effects of climate on reproduction in cattle. J Dairy Sci. 1985;68(6):1568-1578.
  • 31. Reist M, Erdin DK, Von Euw D, et al. Postpartum reproductive function: association with energy, metabolic and endocrine status in high yielding dairy cows. Theriogenology. 2003;59(8):1707-1723.
  • 32. Puppel K, Kuczyńska B. Metabolic profiles of cow's blood; a review. J Sci Food Agric. 2016;96(13):4321-4328.
  • 33. Castillo C, Hernandez J, Bravo A, Lopez-Alonso M, Pereira V, Benedito JL. Oxidative status during late pregnancy and early lactation in dairy cows. Vet J. 2005;169(2):286-292.
  • 34. Turk R, Juretić D, Gereš D, Svetina A, Turk N, Flegar-Meštrić Z. Influence of oxidative stress and metabolic adaptation on PON1 activity and MDA level in transition dairy cows. Anim Reprod Sci. 2008;108(1-2):98-106.
  • 35. Sharma N, Singh NK, Singh OP, Pandey V, Verma PK. Oxidative stress and antioxidant status during transition period in dairy cows. Asian Australas J Anim Sci. 2011;24(4):479-484.
  • 36. Heppelmann M, Krach K, Krueger L, et al. The effect of metritis and subclinical hypocalcemia on uterine involution in dairy cows evaluated by sonomicrometry. J Reprod Dev. 2015;61(6):565-569.
  • 37. Mateus L, da Costa LL, Bernardo F, Silva JR. Influence of puerperal uterine infection on uterine involution and postpartum ovarian activity in dairy cows. Reprod Domest Anim. 2002;37(1):31-35.
Veterinary Sciences and Practices-Cover
  • Başlangıç: 2022
  • Yayıncı: Atatürk Üniversitesi