Entomopatojen Nematodların Arazi Koşullarında Zabrus spp. Clairville, 1806 (Coleoptera: Carabidae) Larvalarına Karşı Etkinliği

Ekin Kambur böcekleri, Zabrus spp. Clairville, 1806 (Coleoptera: Carabidae) buğday bitkilerinin dünya çapında ana zararlılarından biridir ve bu zararlının kontrolü oldukça zordur. Bu çalışmada, yerel iki entomopatojen nematod (EPN) türünün [Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae) ve Steinernema feltiae Filipjev, 1934 (Rhabditida: Steinernematidae)] Zabrus spp. larvalarına karşı kontrol potansiyeli 2015 yılında arazi koşullarında kurulan iki deneme ile değerlendirilmiştir. EPN'lar, nisan ayı ortasında toprak yüzeyine 1 x 106 IJs m-2 konsantrasyonunda uygulanmıştır ve uygulamadan 14 gün sonra (AT) canlı larva sayısı değerlendirilmiştir. Bunun yanısıra, EPN'lerin Zabrus spp. larvaları üzerindeki etkinliğini belirlemek için Zabrus spp.-hasarlı buğday bitkileri uygulamadan sonraki kısa (14 gün AT) ve uzun vadede (6 ay AT) sayılmıştır. Test edilen EPN'lerin, canlı Zabrus spp. larvalarının sayısını her iki denemede de kontrol tedavilerine kıyasla en az %50 oranında azalttığı belirlenmiştir. EPN uygulamasıyla Zabrus spp.-hasarlı buğday bitkilerinin sayısında önemli bir azalma olmasına rağmen bu azalma önemli bir etki yaratmamıştır. Mevcut bulgular, test edilen EPN'lerin Zabrus spp.'lerin sürdürülebilir mücadelesinde iyi bir potansiyele sahip olduğunu göstermektedir.

Field Performance of Entomopathogenic Nematodes against the Larvae of Zabrus spp. Clairville, 1806 (Coleoptera: Carabidae)

The ground beetles, Zabrus spp. Clairville, 1806 (Coleoptera: Carabidae) is one of the major pests of wheat plants across the world, and the control of this pest is a challenging issue. In the present study, the control potential of two local entomopathogenic nematode (EPN) species [Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae) and Steinernema feltiae Filipjev, 1934 (Rhabditida: Steinernematidae)] against the larvae of Zabrus spp. was evaluated with two trials under field conditions in 2015. EPNs were applied at the concentration of 1 x 106 IJs m-2 to the soil surface in mid-April and the number of alive larvae was assessed 14 days after treatment (AT). In addition, Zabrus spp.-damaged wheat plants were counted to establish the efficacy of EPNs on the larvae of Zabrus spp. in short (14 days AT) and long term (6 months AT). EPNs reduced the number of alive Zabrus spp. larvae by at least 50% as compared to the control treatments in both trials. Altgough there was a remarkable decrease in the number of Zabrus spp.-damaged wheat plants to which EPNs were applied, this decrease did not produce a significant effect. Present findings indicate that EPNs tested have a good potential for sustainable management of Zabrus spp.

___

  • Abd-Elgawad, M. M. (2021). Towards sound use of statistics in nematology. Bulletin of the National Research Centre, 45(1), 1-8.
  • Acharya, R., Hwang, H. S., Shim, J. K., Yu, Y. S., & Lee, K. Y. (2019). Control efficacy of fungus gnat, Bradysia impatiens, enhanced by a combination of entomopathogenic nematodes and predatory mites. Biological Control, 138, 104071.
  • Acharya, R., Yu, Y. S., Shim, J. K., & Lee, K. Y. (2020). Virulence of four entomopathogenic nematodes against the tobacco cutworm Spodoptera litura Fabricius. Biological Control, 150, 104348.
  • Azizoglu, U., Karabörklü, S., Ayvaz, A., & Yilmaz, S. (2016). Phylogenetic relationships of insect-associated free-living Rhabditid nematodes from eastern Mediterranean region of Turkey. Applied Ecology and Environmental Research, 14, 93-103.
  • Baimey, H., Zadji, L., Afouda, L., Moens, M., & Decraemer, W. (2015). Influence of pesticides, soil temperature and moisture on entomopathogenic nematodes from southern Benin and control of underground termite nest populations. Nematology, 17(9), 1057-1069.
  • Beckage, N. E. (2011). Insect Immunology. Academic Press, Riverside.
  • Bhat, A. H., Chaubey, A. K., & Askary, T. H. (2020). Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egyptian Journal of Biological Pest Control, 30(1), 1-15.
  • Canhilal, R., M. Imren, H. Toktay, R. Bozbuga, R. Çetintaş, H. Kütük, Y. E. Özdemir & Doğan, S. (2014). Adana ve Kahramanmaraş illerinde entomopatojen nematodlarin belirlenmesi. Proceedings of Turkey V. Plant Protection Congress, Akdeniz University, Antalya.
  • Canhilal, R., M. Imren, L. Waeyenberge, H. Toktay, Y. Deniz, Y. E. Özdemir, S. Doğan & Elekcioglu, I. H. (2015). Occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Kayseri province, Turkey. XVIII. International Plant Protection Congress, Berlin.
  • Canhilal, R., Waeyenberge, L., Toktay, H., Bozbuga, R., Çetintas, R., & Imren, M. (2016). Distribution of steinernematids and heterorhabditids (Rhabditida: Steinernematidae and Heterorhabditidae) in the Southern Anatolia Region of Turkey. Egyptian Journal of Biological Pest Control, 26(4), 237-244.
  • Canhilal, R., Waeyenberge, L., Yüksel, E., Koca, A. S., Deniz, Y., & Imren, M. (2017). Assessment of the natural presence of entomopathogenic nematodes in Kayseri soils, Turkey. Egyptian Journal of Biological Pest Control, 27(2), 1-6.
  • Collins, P.J., & D.I., Schlipalius, 2018. Insecticide Resistance. In C.G. Athanassiou, & F.H. Arthur (Eds), Recent advances in stored product protection (pp. 169-182). Berlin, Germany: Springer.
  • Dillon, A. B., Rolston, A. N., Meade, C. V., Downes, M. J., & Griffin, C. T. (2008). Establishment, persistence, and introgression of entomopathogenic nematodes in a forest ecosystem. Ecological Applications, 18(3), 735-747.
  • FAOSTAT. (2020). Food and agriculture organization statistical database. http://www. fao.org/faostat/en/#data/QC/visualize. Accessed date: September 20, 2020.
  • Georgescu, E., Rîșnoveanu, L., Toader, M., Ionescu, A. M., Gărgăriță, R., & Cană, L. (2017). Actual problems concerning protection of the wheat crops against cereal ground beetle (Zabrus tenebrioides Goeze) attack in south-east of the romania. Scientific Papers-Series A Agronomy 60, 256-263.
  • Griffin, C. T. (2015). Behaviour and population dynamics of entomopathogenic nematodes following application. In R. Campos-Herrera, (Ed), Nematode Pathogenesis of Insects and Other Pests (pp. 57-95). Berlin, Germany: Springer.
  • Glazer, A. N., & Nikaido, H. (2007). Microbial biotechnology: fundamentals of applied microbiology. Cambridge University Press, California.
  • Gulzar, S., Usman, M., Wakil, W., Gulcu, B., Hazir, C., Karagoz, M., Hazir, S., & Shapiro-Ilan, D. I. (2020). Environmental tolerance of entomopathogenic nematodes differs among nematodes arising from host cadavers versus aqueous suspension. Journal of Invertebrate Pathology, 175, 107452.
  • Karabörklü, S., Ayvaz, A., Yilmaz, S., Azizoglu, U., & Akbulut, M. (2015). Native entomopathogenic nematodes isolated from Turkey and their effectiveness on pine processionary moth, Thaumetopoea wilkinsoni Tams. International Journal of Pest Management, 61(1), 3-8.
  • Küçükkayki, E. C., Şirin, Ü., Çalişkan, H., & Şenyüz, Y. (2008). Ground beetle Carabidae: Coleoptera records from Kaz dağları Ida mountain. Biyolojik Çeşitlilik ve Koruma, 6(2), 142-149.
  • Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44(2), 218.
  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132, 1-41.
  • Malan, A. P., Von Diest, J. I., Moore, S. D., & Addison, P. (2018). Control options for false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae), in South Africa, with emphasis on the potential use of entomopathogenic nematodes and fungi. African Entomology, 26(1), 14-29.
  • Marianelli, L., Paoli, F., Torrini, G., Mazza, G., Benvenuti, C., Binazzi, F., Sabbatini Peverieri, G., Bosio, G., Venanzio, D., Giacometto, E., Priori, S., Koppenhöfer, A. M., & Roversi, P. F. (2018). Entomopathogenic nematodes as potential biological control agents of Popillia japonica (Coleoptera, Scarabaeidae) in Piedmont Region (Italy). Journal of Applied Entomology, 142(3), 311-318.
  • McGraw, B. A., Vittum, P. J., Cowles, R. S., & Koppenhöfer, A. M. (2010). Field evaluation of entomopathogenic nematodes for the biological control of the annual bluegrass weevil, Listronotus maculicollis (Coleoptera: Curculionidae), in golf course turfgrass. Biocontrol Science and Technology, 20(2), 149-163.
  • Metwally, H. M., Hafez, G. A., Hussein, M. A., Hussein, M. A., Salem, H. A., & Saleh, M. M. E. (2012). Low cost artificial diet for rearing the greater wax moth, Galleria mellonella L.(Lepidoptera: Pyralidae) as a host for entomopathogenic nematodes. Egyptian Journal of Biological Pest Control, 22(1), 15.
  • Mokrini, F., Laasli, S. E., Benseddik, Y., Joutei, A. B., Blenzar, A., Lakhal, H., Sbaghi, M., Imren, M., Özer, G., Paulitz, T., Lahlali, R., & Dababat, A. A. (2020). Potential of Moroccan entomopathogenic nematodes for the control of the Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae). Scientific Reports, 10(1), 1-11.
  • Müller, U., Vogel, P., Alber, G., & Schaub, G. A. (2008). The innate immune system of mammals and insects. Trends in innate immunity, 15, 21-44.
  • Noh, M. Y., Muthukrishnan, S., Kramer, K. J., & Arakane, Y. (2016). Cuticle formation and pigmentation in beetles. Current Opinion in Insect Science, 17, 1-9.
  • Poinar Jr, G. O., & Grewal, P. S. (2012). History of entomopathogenic nematology. Journal of Nematology, 44(2), 153.
  • Rangaswamy, R. (2010). Textbook of agricultural statistics. New Age International (P) Limited Publishers. New Delhi.
  • Öğretmen, A., Yüksel, E., & Canhilal, R. (2020). Susceptibility of larvae of wireworms (Agriotes spp.)(Coleoptera: Elateridae) to some Turkish isolates of entomopathogenic nematodes under laboratory and field conditions. Biological Control, 149, 104320.
  • Özdemir, E., & Bayram, Ş. (2017). Entomopatojen nematodlar ve simbiyotik bakterileri. Türk Bilimsel Derlemeler Dergisi, 10(1), 06-12.
  • Özdemir, E., & Evlice, E. (2020). Assessment of the susceptibility of the Turkestan cockroach, Blatta lateralis to Turkish isolates of entomopathogenic nematodes. Türkiye Biyolojik Mücadele Dergisi, 11(1), 129-137.
  • Özdemir, E., İnak, E., Evlice, E., Yüksel, E., Delialioğlu, R. A., & Susurluk, I. A. (2021). Effects of insecticides and synergistic chemicals on the efficacy of the entomopathogenic nematode Steinernema feltiae (Rhabditida: Steinernematidae) against Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Crop Protection, 144, 105605.
  • Popov, C., Guran, M., Raranciuc, S., Rotărescu, M., Spiridon, C., Vasilescu, S., & Gogu, F. (2006). Phytosanitary state of cereals, leguminous for grain, industrial and fodder crops in Romania, in 2005. Probleme de Protectia Plantelor, 34(1/2), 15-37.
  • Shapiro-Ilan, D. I., Gouge, D. H., Piggott, S. J., & Fife, J. P. (2006). Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control, 38(1), 124-133.
  • Shapiro-Ilan, D. I., Hazir, S., & Lete, L. (2015). Viability and virulence of entomopathogenic nematodes exposed to ultraviolet radiation. Journal of Nematology, 47(3), 184.
  • Shapiro-Ilan, D., Hazir, S. & Glazer, I. (2017). Basic and applied research: entomopathogenic nematodes. In L. A. Lacey (Ed.), Microbial Control of Insect and Mite Pests (pp. 91-105). London, England: Academic Press.
  • Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food security, 3(3), 307-327.
  • Salame, L., & Glazer, I. (2015). Stress avoidance: vertical movement of entomopathogenic nematodes in response to soil moisture gradient. Phytoparasitica, 43(5), 647-655.
  • Susurluk, A. (2007). Effectiveness of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema feltiae against Tenebrio molitor (yellow mealworm) larvae in different soil types at different temperatures. Turkish Journal of Biology, 30(4), 199-205.
  • SPSS. (2013). IBM SPSS Statistics 22.0 for Windows. Armonk, NY.
  • Van Zyl, C., & Malan, A. P. (2015). Cost-effective culturing of Galleria mellonella and Tenebrio molitor and entomopathogenic nematode production in various hosts. African Entomology, 23(2), 361-375.
  • Vashisth, S., Chandel, Y. S., & Sharma, P. K. (2013). Entomopathogenic nematodes-A review. Agricultural Reviews, 34(3), 163-175.
  • Yuksel, E., & Canhilal, R. (2018). Evaluation of local isolates of entomopathogenic nematodes for the management of black cutworm, Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 28(1), 1-7.
Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi-Cover
  • ISSN: 2149-8245
  • Başlangıç: 2015
  • Yayıncı: BOLU ABANT İZZET BAYSAL ÜNİVERSİTESİ > ZİRAAT VE DOĞA BİLİMLERİ FAKÜLTESİ