H2SO4 İle Aktive Edilen Keşan Yöresi Bentonitinin Di Azo Boyar Madde Bazik Sarı 28 Denge Adsorpsiyonu Karakteristiklerinin İncelenmesi

Bu çalışmada Keşan yöresi asit aktive Ca-Bentoniti adsorbant olarak kullanılmıştır. Tekstil, kozmetik, gıda, kâğıt, halı ve plastik gibi endüstri alanlarında geniş çapta kullanımı olan boyar maddelerden di azo kromorf yapısına sahip Bazik Sarı 28’in (BY28) adsorpsiyon karakteristiği incelenmiştir. Adsorpsiyon üzerinde doğrudan etkili pH, adsorbant miktarı, denge zamanı ve başlangıç konsantrasyonu gibi koşullar BY28 adsorpsiyonu için optimize edilmiştir. Denge adsorpsiyon koşulları olarak pH= 6, 0,05 g adsorbant miktarı ve denge zamanı olarak 40 dakika elde edilmiştir. Denge adsorpsiyon koşullarında elde edilen deneysel sonuçlar lineerleştirilmiş Langmuir modeli (R2=0,9987), Freundlich modeli (R2=0,8887) ve Dubinin-Radushkevich (D-R) (R2=0,5594) karşılaştırılarak yorumlanmıştır. Keşan yöresine ait asit aktive Ca-bentonitin tek tabaka adsorpsiyon kapasitesi 116,3 mg/g olarak elde edilmiştir. 25 °C denemeler için Gibbs serbest enerjisi (ΔGo ) hesaplanmış ve BY28’in asit aktive bentonit üzerine adsorpsiyon mekanizmasının istemli bir reaksiyon olduğu sonucuna varılmıştır.

Investigation of Equilibrium Adsorption Characteristics of Di Azo Dyes Basic Yellow 28 of H2SO4 Activated Kesan Region Bentonite

In this study, acid activated Ca-Bentonite of Keşan region was used as adsorbent. Adsorption characteristics of Basic Yellow 28 (BY28) which has di azo chromorph structure, which is widely used in industry such as textile, cosmetics, food, paper, carpet, and plastic were investigated in batch system. Conditions such as pH, adsorbent amount, equilibrium time, and initial concentration which are directly effective on adsorption were optimized for BY28 adsorption. pH = 6, 0.05 g adsorbent amount and 40 minutes of equilibrium time were obtained as equilibrium adsorption conditions. Experimental results obtained under equilibrium adsorption conditions were interpreted by comparing linearized Langmuir model (R2 = 0.9987), Freundlich model (R2 = 0.8887), and Dubinin-Radushkevich (D-R) (R2 = 0.5594). The single layer adsorption capacity of acid activated Cabentonite of Keşan region was obtained as 116.3 mg / g. Gibbs free energy (ΔGo ) was calculated for experiments at 25 ° C and it was concluded that the adsorption mechanism of BY28 on acid activated bentonite is a voluntary reaction.

Kaynakça

Amin, M. T., Alazba, A. A., & Shafiq, M. (2015). Adsorptive Removal of Reactive Black 5 from Wastewater Using Bentonite Clay: Isotherms, Kinetics and Thermodynamics, Sustainability, 7, 15302-15318.

Avcı, S. B. (2009). Soda Ve Mgo İle Aktiflendirilmiş Aratip Bentonitlerin Sondaj Ve Döküm Bentoniti Karakteristiklerinin İncelenmesi. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul

Bilgiç, Ö. (2013). Akrilik Asit Fonksiyonel Grupları İçeren Çapraz Bağlı Kopolimer Kullanarak Sulu Çözeltilerden Sr(II) Uzaklaştırılması. Yüksek Lisans Tezi. İstanbul Üniversitesi, İstanbul.

Boudechiche, N., Fares, M., Ouyahia, S., Yazid, H., Trari M., & Sadaoui, Z. (2019). Comparative Study on Removal of Two Basic Dyes in Aqueous Medium by Adsorption Using Activated Carbon from Ziziphus Lotus Stones. Microchemical Journal, 146, 1010– 1018.

Castro, M., Abad, M., Sumalinog, D., Abarca, R., Paoprasert, P., Luna, M. (2018). Adsorption of Methylene Blue dye and Cu (II) ions on EDTA-modified bentonite: Isotherm, kinetic and thermodynamic studies. Sustainable Environment Research, 28, 197-205. doi:10.1016/j.serj.2018.04.001

Clark, J., Macquarrie, D., Gronnow, M., & Budarin V. (2013). Green Chemistry Principles. K. Boodhoo, (Ed.), Process Intensification for Green Chemistry (33-55). England: John Wiley & Sons, Ltd.

Dawood, S., & Sen, T.K. (2014). Review on Dye Removal from Its Aqueous Solution into Alternative Cost Effective and NonConventional Adsorbents. Journal of Chemical and Process Engineering, 1: 104, 1-11.

Giles C. H., MacEwan, T. H., Nakhwa S. N., & Smith D. (1960). Studies in Adsorption. Part XI. A System of Classification of Solution Adsorption Isotherms and Its Use in Diagnosis of Adsorption Mechanisms and In Measurements of Specific Surface Areas of Solids, 3973–3993.

Gönüllü, T. (2004). Endüstriyel İşlemler. Endüstriyel Kirlenme Kontrolü (13-29). İstanbul: Birsen Basın Yayın. Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal a review. Journal of Environmental Management, 90, 2313–2342. doi:10.1016/j.jenvman.2008.11.017

Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L., & Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266-276. doi:10.1016/j.matchemphys.2017.09.028

Ismadji, S., Soetaredjo, E., F., & Ayucitra, A. (2015). Clay Materials for Environmental Remediation, Green Chemistry for Sustainability (113-118). London, Springer Cham Heidelberg New York Dordrecht.

Jadhav, J., & Phugare, S. (2012). Textile Dyes: General Informatıon And Environmental Aspects. A. Nemr, (Ed.), NonConventional Textile Waste Water Treatment (1-29).United States: Nova Science Publications.

Javed, S., Zahir, A., Khan, A., Afzal, S. & Mansha, M. (2018). Adsorption Of Mordant Red 73 Dye On Acid Activated Bentonite: Kinetics And Thermodynamic Studies. Journal of Molecular Liquids, 254, 398–405. doi:10.1016/j.molliq.2018.01.100

Koçkaya, G. (2016). Anilin Mavisinin Atıksulardan Uzaklaştırılmasında Yeni Bir Adsorbent Kullanımı. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.

Kooli,F., Liu, Y., Abboudi M., Hassani, H.O., Rakass, S., Ibrahim, S.M., & Al Wadaani, F. (2019). Waste Bricks Applied as Removal Agent of Basic Blue 41 from Aqueous Solutions: Base Treatment and Their Regeneration Efficiency, Applied Sciences, 9, 1237. doi:10.3390/app9061237

Levchuk, I., Marquez, J. & Sillanpaa, M. (2018). Removal of natural organic matter (NOM) from water by ion exchange - A review. Chemosphere 192, 90-104.

Madsen, H. T. (2014). Chemistry of Advanced Environmental Purification Processes of Water, Capter 6. Membrane Filtration in Water Treatment (199-248). Elsevier.

Mattiasson, B., Murto, M., Kumar, N. & Jonstrup, M. (2011). Sequential Anaerobic–Aerobic Treatment Of Azo Dyes: Decolourisation And Amine Degradability. Desalination, 280, 339-346.

Obiageli, A. (2017). Adsroption Of Cationic Dye Onto Low-Cost Adsorbent Synthesized From Bentonite Clay Part I. Kinetic And Thermodynamic Studies. Journal of Chemical Technology and Metallurgy, 52, 3, 491-504.

Olgun, A., & Atar, N. (2009). Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste. Journal of Hazardous Materials, 161, 148–156. doi:10.1016/j.jhazmat.2008.03.064

Pawar, R., Gupta, P., Lalhmunsiama, Bajaj, H., & Lee, S. (2016). Al-İntercalated Acid Activated Bentonite Beads For The Removal Of Aqueous Phosphate. Science of the Total Environment, 572, 1222–1230. doi:10.1016/j.scitotenv.2016.08.040

Turabik, M. (2008). Adsorption Of Basic Dyes From Single And Binary Component Systems Onto Bentonite: Simultaneous Analysis Of Basic Red 46 And Basic Yellow 28 By First Order Derivative Spectrophotometric Analysis Method. Journal of Hazardous Material, 158, 52-64. doi:10.1016/j.jhazmat.2008.01.033

Wang, L., Hung, Y., Shammas, N. (2005). Physicochemical Treatment Processes. New Jersey: Humana Press Inc

Worch, E. (2012). Adsorption Technology in Water Treatment; Fundamentals, Proc. and Mod., Dresden-Germany.

Yener, J., Kopaç, T., Doğu, G., & Doğu, T. (2006). Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and amberlite. Journal of Colloid and Interface Science, 294, 255-264. doi:10.1016/j.jcis.2005.07.040

Zermane, F,. Bouras, O., Baudu, M., & Basly, J. (2010). Cooperative coadsorption of 4-nitrophenol and basic yellow 28 dye onto an iron organo–inorgano pillared montmorillonite clay. Journal of Colloid and Interface Science, 350, 315–319. doi:10.1016/j.jcis.2010.06.040

Kaynak Göster