Dıştan Dişli Pompalarda Diş Ucundaki Kaçakların Teorik ve Sayısal Karşılaştırılması

Dıştan dişli pompalar, akışkan gücünün kullanıldığı uygulamalarda en çok tercih edilen pompa tiplerinden biri olmasına rağmen tasarım aşamasında iç kaçaklar, gürültü ve titreşim gibi problemler göz önünde bulundurulmalıdır. Bu nedenle, teorik hesaplamaları ve akış simülasyonlarını karşılaştırırken, bu çalışmada yeni bir iki boyutlu sayısal uç kaçağı analiz yöntemi geliştirilmiştir. Akış simülasyonları, 7 farklı dönme hızında ve 2 bardan 10 bara kadar olan basınç farklarında yapılmıştır. Ayrıca uç kaçak üzerindeki sıcaklık etkileri bu yeni yöntemle araştırılmıştır. Bu amaçla, gövde duvarı sıcaklığı 30 ºC ila 60 ºC arasında değiştirilmiştir. Sayısal ve teorik hesaplamalar arasındaki farkın seçilen parametre aralığında % 100'den fazla olabileceği gösterilmiştir. Bu sapma, dişli pompasının giriş ve çıkış portları arasındaki basınç farkının artmasıyla artmaktadır. Simülasyonlar, sapmanın, diş tepesi ile gövde duvarı arasına kaçak akış girerken ortaya çıkan enerji yitiminden ve teorik hesaplamalarda yapılan tam gelişmiş akış varsayımından kaynaklandığını ortaya koymuştur. Ayrıca, duvardaki sıcaklığın artması ile birlikte diş ucu kaçağının, viskozitenin sıcaklıkla düşmesine bağlı olarak, her 10 °C’de %10’luk bir arttığı gözlemlenmiştir

Comparison of Theoretical and Numerical Tip Leakages in External Gear Pump

Although external gear pumps are one of the mostly used pump types in the fluid power applications, some problems related to them such as internal leakages, noise and vibration with gear pumps has to be considered during the design stage. Therefore, a novel two-dimensional numerical tip leakage analysis method has been developed in this study, while comparing the theoretical calculations and numerical simulations. Numerical simulations have been performed for pressure differences from 2 bars up to 10 bars and for seven different rotational speeds. Moreover, temperature effects on tip leakage has been investigated with this new method. For this purpose, the body wall temperature has been varied from 30 ºC up to 60 ºC. It is shown that the difference between numerical and theoretical calculations can be larger than 100% over the selected range of parameters. This deviation increases with the rise in the pressure difference between inlet and outlet ports of the gear pump. Simulations have revealed that the deviation is first, because of the energy dissipation occurring as the leakage flow enters and leaves the narrow gap between wall and tooth tip, which is ignored in the theoretical analysis, and second because of the fully developed flow assumption made in theoretical analysis. Furthermore, it has been shown that leakages increase 10% for each 10 °C temperature increment at the casing wall due to the drop in the viscosity of the fluid.

Kaynakça

Castilla, R., Gamez-Montero, P. J., Ertrk, N., Vernet, A., Coussirat, M., & Codina, E. (2010). Numerical simulation of turbulent flow in the suction chamber of a gearpump using deforming mesh and mesh replacement. International Journal of Mechanical Sciences, 52(10), 1334–1342. https://doi.org/10.1016/j.ijmecsci.2010.06.009

Castilla, R., Gamez-Montero, P. J., del Campo, D., Raush, G., Garcia-Vilchez, M., & Codina, E. (2015). Three-Dimensional Numerical Simulation of an External Gear Pump With Decompression Slot and Meshing Contact Point. Journal of Fluids Engineering, 137(April), 41105. https://doi.org/10.1115/1.4029223

Devendran, R. S., & Vacca, A. (2013). Optimal design of gear pumps for exhaust gas aftertreatment applications. Simulation Modelling Practice and Theory, 38, 1–19. https://doi.org/10.1016/j.simpat.2013.06.006

Ghionea, G., Ioan, C., & Tiriplic, P. (2012). Simulation of the Working Conditions for a Gear Pump Using Finite Element Analysis Method, 2012(Xxvi), 21–28. Ghazanfarian, J., & Ghanbari, D. (2014). Computational Fluid Dynamics Investigation of Turbulent Flow Inside a Rotary Double External Gear Pump. Journal of Fluids Engineering, 137(2), 21101. https://doi.org/10.1115/1.4028186

Houzeaux, G., & Codina, R. (2007). A finite element method for the solution of rotary pumps. Computers & Fluids, 36(4), 667– 679. https://doi.org/10.1016/j.compfluid.2006.02.005 İmamoğlu D. (2019). Numerical and Theoretical Analysis of External Gear Pump, Master Thesis, Ozyegin University, İstanbul.

Koç, E., & Canbulut, F. (1985). Pozitif Deplasmanlı Pompa ve Motorlarda İç Akışkan Kaçağı. Kayseri: Erciyes Üni, Fen Bilimleri Dergisi.

Schiffer, J., Benigni, H., & Jaberg, H. (2013). Development of a novel miniature high-pressure fuel pump with a low specific speed. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(7), 997–1006. https://doi.org/10.1177/0954407013476820

Strasser, W. (2007). CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh. Journal of Fluids Engineering, 129(4), 476. https://doi.org/10.1115/1.2436577

Yusof, A. A., Wasbari, F., Zakaria, M. S., & Ibrahim, M. Q. (2013). Slip flow coefficient analysis in water hydraulics gear pump for environmental friendly application. IOP Conference Series: Materials Science and Engineering, 50(1), 12016. https://doi.org/10.1088/1757-899X/50/1/012016

Kaynak Göster