Assessment of Mechanical and Thermal Properties of Juniperus Drupacea/Epoxy Biocomposite

This paper presents experimental data using estimated approach to determine some mechanical properties of epoxy matrix based composites. For this reason, the epoxy matrix was made composite with the powdered materials obtained from different parts of the juniperus drupacea seeds. In order to obtain a homogeneous structure ultrasonic mixing technique was preferred. As an experimental estimation approach, the Taguchi method that is an alternative way to characterize complex composite structures, to come from above the problems and to investigate the effects of test parameters-factors by performing a few experiments was used. In the study, the L9 Taguchi orthogonal array has been preferred. Based on some production conditions; bio-reinforcement material has lowered the average hardness value to 4.22 and formed a more soft structure in addition to improving the tensile strength value by 46% compared to the neat sample. Parametric study showed that; the most important parameter affecting hardness and tensile strength are the mixing time and reinforcement ratio, respectively.

Kaynakça

Akbulut, M., Çoklar, H., & Özen, G., (2008). Rheological Characteristics of Juniperus drupacea Fruit Juice (pekmez) Concentrated by Boiling. Food Science and Technology International, 14, 321-328. https://doi.org/10.1177/1082013208097193

Akıncı, I., Özdemir, F., Topuz, A., Kabaş, O., & Çanakçı, M., (2004). Some physical and nutritional properties of Juniperus drupacea fruits. Journal of Food Engineering, 65, 325–331. https://doi.org/10.1016/j.jfoodeng.2004.01.029

Akkaya, Z., (2010). Characterisation of the product obtained by drying of pekmez, MSc. dissertation, Ege University İzmir, TURKEY.

Alavudeen, A., Rajini, N., Karthikeyan, S., Thiruchitrambalam M., & Venkateshwaren, N., (2015). Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design, 66, 246-257. https://doi.org/10.1016/j.matdes.2014.10.067

Alomayri, T., Shaikh F.U.A., & Low, I.M., (2014). Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites”, Materials & Design, 57, 360–365. https://doi.org/10.1016/j.matdes.2014.01.036

Borchani, K.E., Carrot C., & Jaziri, M., (2015). Biocomposites of Alfa Fibers Dispersed in the Mater-Bi® Type Bioplastic: Morphology, Mechanical And Thermal Properties. Composites Part A: Applied Science and Manufacturing, 78, 371-379. https://doi.org/10.1016/j.compositesa.2015.08.023

Day, R.J., Lovell, P.A., & Wazzan, A.A., (2001). Toughened carbon/epoxy composites made by using core/shell particles. Composites Science and Technology, 61, 41-56. https://doi.org/10.1016/S0266-3538(00)00169-X

Dönmez, İ.E., (2005). Studies on the chemical compositions of syrian juniper (Arceuthos drupacea Ant. et. Kotschy), MSc dissertation, University of Zonguldak Karaelmas, Zonguldak, TURKEY.

Fernández, J.A., Le Moıgne, N., Caro-Bretelle, A.S., El Hage, R., Le Duc, A., Lozachmeur, M., Bono, P., & Bergeret, A., (2016). Role Of Flax Cell Wall Components On The Microstructure And Transverse Mechanical Behaviour of Flax Fabrics Reinforced Epoxy Biocomposites, Cork–Polymer Biocomposites: Mechanical, Structural And Thermal Properties. Industrial Crops and Products, 85, 93-108.

Fernandes, E.M., Correlo, V.M., Mano, J.F., & Reıs, R.L., (2015). Cork–Polymer Biocomposites: Mechanical, Structural and Thermal Properties. Materials & Design, 82, 282-289. https://doi.org/10.1016/j.matdes.2015.05.040

Gemi, L., Kara, M., & Avci A., (2016) Low velocity impact response of prestressed functionally graded hybrid pipes. Composites Part B: Engineering, 106 (1), 154-163. https://doi.org/10.1016/j.compositesb.2016.09.025

Harini, K., Mohan, C.C., Ramya, K., Karthıkeyan, S., & Sukumar, M., (2018). Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells. Carbohydrate Polymers, 184, 231-242. https://doi.org/10.1016/j.carbpol.2017.12.072

Imoisili, P.E., Ezenwafor, T.C., Attah Daniel, B.E., & Olusunle, S.O.O., (2013). Mechanical Properties of Cocoa-Pod/Epoxy Composite; Effect of Filler Fraction. American Chemical Science Journal, 3(4): 526-531. DOI : 10.9734/ACSJ/2013/5526

Johnson, M., Tucker, N., Barnes S., & Kırwan, K., (2005). Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres. Industrial Crops and Products, 22, 175–186. https://doi.org/10.1016/j.indcrop.2004.08.004

Jingqiang, S., Yafeng, Z., Jindong, Q., & Jianzheng, K., (2004). Core-shell particles with an acrylate polyurethane core as tougheners for epoxy resins. Journal of Materials Science, 39 (20), 6383–6384. DOI: 10.1023/B:JMSC.0000043763.65417.4f

Jumaidin, R., Sapuan, S.M., Jawaıd, M., Ishak, M.R., & Saharı, J., (2016). Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. International Journal of Biological Macromolecules, 89, 575-581. https://doi.org/10.1016/j.ijbiomac.2016.05.028

Kara, M., & Kırıcı, M., (2017). Effects of the number of fatigue cycles on the impact behavior of glass fiber/epoxy composite tubes. Composites Part B: Engineering, 123, 55-63. https://doi.org/10.1016/j.compositesb.2017.04.021

Karaca, İ., (2009). Determination of vitamin and mineral in fruit juice concentrates, MSc dissertation, İnönü University, Malatya, TURKEY.

Karaağaç, B., (2013). Use of Ground Pistachio Shell as Alternative Fillerin Natural Rubber/Styrene–Butadiene Rubber-Based Rubber Compounds. Polymer Composites, 35, 2. 245-252. https://doi.org/10.1002/pc.22656

Kasemsiri, P., Neramittagapong A., & Chindaprasirt, P., (2015). Effect of cashew nut shell liquid on gelation, cure kinetics, and thermomechanical properties of benzoxazine resin. Thermochimica Acta, 600, 20–27. https://doi.org/10.1016/j.tca.2011.03.020

Kocakulak, E., (2007). Researches on the essential oils of Juniperus drupacea Lab., PhD. dissertation, Gazi University, Ankara, TURKEY.

Koçak, D., & Mıstık, S.I., (2015). The use of palm leaf fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials, 1st Ed., (pp. 273–281), Woodhead Publishing, Chapter 9, İstanbul,

Kuburi, L.S., Dauda, M., Obada, D.O., Umaru, S., Dodoo-Arhın, D., Iliyasu, I., Balogun, M.B., & Mustapha, S., (2017). Effects of Coir Fiber Loading on the Physio-mechanical and Morphological Properties of Coconut Shell Powder Filled Low Density Polyethylene Composites. Procedia Manufacturing, 7, 138-144. https://doi.org/10.1016/j.promfg.2016.12.036

Lamrani, M., Laaroussi, N., Khabbazi, A., Khalfaoui, M., Garoum, M., & Feiz, A., (2017). Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster. Case Studies in Construction Materials, 7, 294-304. https://doi.org/10.1016/j.cscm.2017.09.006

Matejka, V., Fu, Z., Kukutschová, J., Qi, S., Jiang, S., Zhang, X., Yun, R., Vaculík, M., Heliová, M., & Lu, Y., (2013). Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Materials & Design, 51, 847–853. https://doi.org/10.1016/j.matdes.2013.04.079

Mati-Baouche, N., De Baynast, H., Lebert, A., Sun, S., Lopez-Mingo, C.J.S., Leclaire, P., & Michaud, P., (2014). Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products, 58, 244–250. https://doi.org/10.1016/j.indcrop.2014.04.022

Morkavuk, S., Köklü, U., Bağcı, M., & Gemi, L., Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study. Composites Part B: Engineering, 147, 1-11. https://doi.org/10.1016/j.compositesb.2018.04.024

Prabhakar, M.N., Shah, A.R., Chowdoji Rao, K., & Song, J.I., (2015). Mechanical And Thermal Properties of Epoxy Composites Reinforced With Waste Peanut Shell Powder As A Bio-Filler. Fibers and Polymers, 16, 5. DOI: 10.1007/s12221-015-1119-1

Saba, N., Paridah, M.T., Abdan, K., & Ibrahim, N.A., (2016). Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Construction and Building Materials, 123, 15–26. https://doi.org/10.1016/j.conbuildmat.2016.06.131

Saba, N., Parıdah, M.T., Abdan K., & Ibrahım, N.A., (2016). Physical structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Materials Chemistry and Physics, 184, 64-71. DOI: 10.1016/j.matchemphys.2016.09.026

Sarki, J., Hassan, S.B., Aigbodion V.S., & Oghenevweta, J.E., (2011). Potential of using coconut shell particle fillers in ecocomposite materials. Journal of Alloys and Compounds, 509, 2381–2385. https://doi.org/10.1016/j.jallcom.2010.11.025

Kaynak Göster