Effects of short-term hyperoxic ventilation on lung, kidney, heart, and liver in a rat model: A biochemical evaluation*

BACKGROUND: Despite studies on the adverse effects of hyperoxia, its use is still recommended by the World Health Organization. The aim of this study was to test the possible harmful effects of hyperoxia on the lung, kidney, heart, and liver in a rat mechanical ventilation model. METHODS: Male Wistar rats were randomly assigned into two groups (n=6/group): Normoxic (FiO2: 0.3) or hyperoxic (FiO2: 1.0) ventilation for 4 h. The injury was evaluated in bronchoalveolar lavage (BAL), blood, lung, liver, kidney, and heart was evaluated in terms of cell surface integrity, extracellular matrix (sialic acid, syndecan-1), osmotic stress (free hemoglobin), and redox homeostasis-lipid peroxidaation (malondialdehyde). BAL and wet/dry weight ratio were also evaluated for cellular permeability. RESULTS: Four hours of hyperoxic ventilation did not lead to significant changes in (1) sialic acid, syndecan-1, (2) malondialdehyde levels and wet/dry weight ratio in liver, kidney, heart, and lung compared to normoxic ventilation. CONCLUSION: Mechanical ventilation with hyperoxia seems to have almost similar effects compared to ventilation with normoxia. However, the long term effect of hyperoxia should be evaluated.

Kısa süreli hiperoksik ventilasyonun bir sıçan modelinde akciğer, böbrek, kalp ve karaciğer üzerine etkileri: Biyokimyasal değerlendirme

AMAÇ: Hiperoksinin olumsuz etkileri üzerine yapılan çalışmalara rağmen, Dünya Sağlık Örgütü (WHO) hiperoksinin kullanımını önermektedir. Bu çalışmanın amacı sıçan mekanik ventilasyon modelinde hiperoksinin akciğer, böbrek, kalp ve karaciğer üzerindeki olası olumsuz etkilerini test etmektedir. GEREÇ VE YÖNTEM: Erkek Wistar sıçanlar dört saat boyunca normoksik (FiO2: 0.3) veya hiperoksik (FiO2: 1.0) ventile edilerek iki gruba (n=6/ grup) ayrıldı. Hasar hücre yüzey bütünlüğü, ekstraselüler matriks (sialik asit, sindekan-1), ozmotik stres (serbest hemoglobin) ve redoks homeostazisi- lipit peroksidasyonu (malondialdehit) açısından bronkoalveolar lavaj, kan, akciğer, böbrek, kalp ve karaciğer örneklerinde değerlendirildi. Ayrıca bronkoalveolar lavaj ve ıslak/kuru ağırlık oranı ile hücre geçirgenliği değerlendirildi. BULGULAR: Dört saatlik hiperoksik ventilasyon sialik asit, sindekan-1, malondialdehit düzeylerinde ve organların ıslak kuru ağırlıklarında anlamlı bir değişikliğe neden olmadı. TARTIŞMA: Hiperoksik ventilasyonun normoksik ventilasyona benzer bir etki gösterdiği görülmektedir. Ancak, hiperoksinin uzun vadeli etkileri değerlendirilmelidir.

___

1. Greif R, Akca O, Horn EP, Kurz A, Sessler DI, Outcomes Research Group. Supplemental perioperative oxygen to reduce the incidence of surgical wound infection. N Engl J Med 2000;342:161–7.

2. Belda FJ, Aguilera L, de la Asunción JG, Alberti J, Vicente R, Ferrándiz L, et al. Supplemental perioperative oxygen and the risk of surgical wound infection: A randomized controlled trial. JAMA 2005;294:2035–42.

3. Singhal AB, Wang X, Sumii T, Mori T, Lo EH. Effects of normobaric hyperoxia in a rat model of focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2002;22:861–8.

4. Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect Dis 2016;16:e288–303.

5. Davis WB, Rennard SI, Bitterman PB, Crystal RG. Pulmonary oxygen toxicity: Early reversible changes in human alveolar structures induced by hyperoxia. N Engl J Med 1983;309:878–83.

6. Crapo JD. Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol 1986;48:721–3.

7. Vilalta A, Sahuquillo J, Merino MA, Poca MA, Garnacho A, Martínez- Valverde T, et al. Normobaric hyperoxia in traumatic brain injury: Does brain metabolic state influence the response to hyperoxic challenge? J Neurotrauma 2011;28:1139–48.

8. Cabello JB, Burls A, Emparanza JI, Bayliss SE, Quinn T. Oxygen therapy for acute myocardial infarction. In: Cabello JB, editor. Cochrane Database of Systematic Reviews. Vol. 12. Chichester, UK: John Wiley and Sons, Ltd.; 2016.

9. Wang CH, Chang WT, Huang CH, Tsai MS, Yu PH, Wang AY, et al. The effect of hyperoxia on survival following adult cardiac arrest: A systematic review and meta-analysis of observational studies. Resuscitation 2014;85:1142–8.

10. Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray JE, et al. AVOID Investigators. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation 2015;131:2143–50.

11. Barry BE, Crapo JD. Patterns of accumulation of platelets and neutrophils in rat lungs during exposure to 100% and 85% oxygen. Am Rev Respir Dis 1985;132:548–55.

12. Brueckl C, Kaestle S, Keremetal A. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol 2006;34:453–63.

13. Martin JV, Liberati DM, Diebel LN. Disparate effects of catecholamines under stress conditions on endothelial glycocalyx injury: An in vitro model. Am J Surg 2017;214:1166–72.

14. Harboe M. A method for determination of hemoglobin in plasma by near-ultraviolet spectrophotometry. Scand J Clin Lab Invest 1959;11:66– 70.

15. Han V, Serrano K, Devine DV. A comparative study of common techniques used to measure haemolysis in stored red cell concentrates. Vox Sang 2010;98:116–23.

16. Sydow G. A simplified quick method for determination of sialic acid in serum. Biomed Biochim Acta 1985;44:1721–3.

17. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978;52:302–10.

18. Hafner S, Beloncle F, Koch A, Radermacher P, Asfar P. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care 2015;5:42.

19. Zaher TE, Miller EJ, Morrow DM, Javdan M, Mantell LL. Hyperoxia- induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med 2007;42:897–908.

20. Cortés DO, Puflea F, Donadello K, Taccone FS, Gottin L, Creteur J, et al. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc Res 2015;98:23–8.

21. Vliegenthart JF. The complexity of glycoprotein-derived glycans. Proc Jpn Acad Ser B Phys Biol Sci 2017;93:64–86.

22. Varki A. Sialic acids in human health and disease. Trends Mol Med 2008;14:351–60.

23. Görög P, Kovács IB. Anti-inflammatory effect of sialic acid. Agents Actions 1978;8:543–5.

24. Bassagañas S, Pérez-Garay M, Peracaula R. Cell surface sialic acid modulates extracellular matrix adhesion and migration in pancreatic adenocarcinoma cells. Pancreas 2014;43:109–17.

25. Rajendiran S, Lakshamanappa HS, Zachariah B, Nambiar S. Desialylation of plasma proteins in severe dengue infection: Possible role of oxidative stress. Am J Trop Med Hyg 2008;79:372–7.

26. Barrera G, Pizzimenti S, Daga M, Dianzani C, Arcaro A, Cetrangolo GP, et al. Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants (Basel) 2018;7:102.

27. Helmerhorst HJ, Schouten LR, Wagenaar GT, Juffermans NP, Roelofs JJ, Schultz MJ, et al. Hyperoxia provokes a time and dose dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes. Intensive Care Med Exp 2017;5:27.

28. Gladwin MT, Kanias T, Kim-Shapiro DB. Hemolysis and cell-free hemoglobin drive an intrinsic mechanism for human disease. J Clin Invest 2012;122:1205–8.

29. Loomis Z, Eigenberger P, Redinius K, Lisk C, Karoor V, Nozik-Grayck E, et al. Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS One 2017;12:e0171219.

30. Omar HR, Mirsaeidi M, Socias S, Sprenker C, Caldeira C, Camporesi EM, et al. Plasma free hemoglobin is an independent predictor of mortality among patients on extracorporeal membrane oxygenation support. PLoS One 2015;10:e0124034.

31. Espinoza ED, Pozo MO, Edul K, Furche M, Motta MF, Vazquez AR, et al. Effects of short-term hyperoxia on sytemic hemodynamics, oxygen transport, and microcirculation: An observational study in patients with septic shock and healthy volunteers. J Crit Care 2019;53:62–8.

32. Pilcher J, Weatherall M, Shirtcliffe P, Bellomo R, Young P, Beasley R. The effect of hyperoxia following cardiac arrest a systematic review and meta- analysis of animal trials. Resuscitation 2012;83:417–22.

33. Heinrichs J, Lodewyks C, Neilson C, Abou-Setta A, Grocott HP. The impact of hyperoxia on outcomes after cardiac surgery: A systematic review and narrative synthesis. Can J Anaesth 2018;65:923–35.

34. Ronning OM, Guldvog B. Should stroke victims routinely receive supplemental oxygen? A quasi-randomized controlled trial. Stroke 1999;30:2033–7.

35. Motoyama T, Okamoto K, Kukita I, Hamaguchi M, Kinoshita Y, Ogawa H. Possible role of increased oxidant stress in multiple organ failure after systemic inflammatory response syndrome. Crit Care Med 2003;31:1048–52.

36. Bailey TC, Maruscak AA, Martin EL, Forbes AR, Petersen A, McCaig LA, et al. The effects of long-term conventional mechanical ventilation on the lungs of adult rats. Crit Care Med 2008;36:2381–7.

37. Nastos C, Kalimeris K, Papoutsidakis N, Tasoulis MK, Lykoudis PM, Theodoraki K, et al. Global consequences of liver ischemia/reperfusion injury. Oxid Med Cell Longev 2014;2014:906965.

38. Zhao H, Huang H, Ologunde R, Lloyd DG, Watts H, Vizcaychipi MP, et al. Xenon treatment protects against remote lung injury after kidney transplantation in rats. Anesthesiology 2015;122:1312–26.

39. He LS, Chang SW, de Montellano PO, Burke TJ, Voelkel NF. Lung injury in Fischer but not Sprague-Dawley rats after short-term hyperoxia. Am J Physiol 1990;259 6 Pt 1:L451–8.

___