YÜZEY KORUYUCU REÇİNENİN DÖĞER TÜFÜ VE İSCEHİSAR ANDEZİTİNİN KILCAL SU EMME POTANSİYELİ ÜZERİNE ETKİSİNİN İNCELENMESİ

Doğal taşlarda ıslanma-kuruma, donma-çözülme ve tuz kristallenmesine bağlı ayrışmanın önemli faktörlerinden birisi sudur. Su, değişik yollarla doğal yapı taşları bünyesine nüfuz etmektedir. Absorbsiyonun yanı sıra kılcal su emme mekanizması bu ayrışmalarda büyük önem taşımaktadır. Kılcal su emme miktarı, doğal yapı taşlarının gözeneklilik boyut dağılımına bağlıdır. Bu çalışmada, Afyonkarahisar yöresinde doğal yapı taşı olarak kullanılan Döğer tüfü ve İscehisar andezitinin, değişik tuzlu ortamlarda kılcal su emme potansiyeline yüzey koruyucu reçine etkisi incelenmiştir. Bu amaçla önce deneylerde kullanılan yapı taşlarının malzeme karakterizasyonu yapılarak, kimyasal, petrografikmineralojik (polarizan mikroskop, XRD), gözenek çapı dağılımı ve fiziko-mekanik özellikleri belirlenmiştir. İkinci aşamada ise sodyum sülfat (Na2SO4 10H2O) ve sodyum klorür (NaCl) sulu çözeltilerinden kılcal su emme özelliklerini belirlemek amacıyla deneysel çalışmalar yapılmıştır. Aynı deneyler yüzey koruyucu reçine sürülmüş örnekler üzerinde de tekrarlanmıştır. Bu çalışmalar sonucunda Döğer tüflerinin kılcal su emme potansiyeli saf suda 14,70 kg/m2 s 0.5, sodyum sülfatlı çözeltide 15,26 kg/m2 s 0.5 ve sodyum klorürlü sulu çözeltide 15,68 kg/m2 s 0.5, andezitlerin kılcal su emme potansiyeli sırasıyla 1,75; 3,04 ve 2,77 kg/m2 s 0.5 olarak bulunmuştur. Yüzey koruyucu reçine sürülmüş örneklerde aynı değerler önemli ölçüde azalarak 1 kg/m2 s 0.5 değerinin altında ölçülmüştür.

Investigation of the Effects of Surface Protection Resin on Capillary Water Absorption of Döğer Tuff and Iscehisar Andesite

Water is one of the important factors of deterioration due to wetting-drying, freezing-thawing and salt crystallization in natural stones. Water enters into natural building stones in different ways. In addition to water absorption, the capillary water absorption mechanism is of great importance in these deteriorations. The amount of capillary water absorption depends on the pore size distribution of the natural building stones. In this study, the effect of surface protection resin on the capillary water absorption potential of İscehisar andesite and Döğer tuffs in Afyonkarahisar region was investigated. For this purpose, chemical, petrographic-mineralogical (polarizing microscope, XRD), pore size distribution and physico-mechanical properties of the building stones used in the experiments have been determined. In the second stage, experimental studies were carried out to determine the capillary water absorption properties in sodium sulfate (Na2SO4 10H2O) and sodium chloride (NaCl) solution water. The same experiments were repeated on treated samples with water-repellent chemicals. As a result of these studies, water adsorption potential was found of the tested samples the values of 14.70 kg/m2 s 0.5 in normal water, 15.26 kg/m2 s 0.5 in sodium sulphate solution and 15.68 kg/m2 s 0.5 in sodium chloride solution, the capillary water absorption potential of andesites was 1.75, 3.04 and 2.77 kg/m2 s 0.5. The same values were significantly reduced and measured below 1 kg/m2 s 0.5 which the samples of the treated by surface protective resin.

___

  • Chabas, A. ve Jeannette, D. (2001) Weathering of marbles and granites in marine environment: petrophysical properties and special role of atmospheric salts, Environmental Geology, 40(3), 359-368. doi: 10.1007/s002540000
  • Chen, T.C. Yeung, M.R. ve Mori, N. (2004) Effect of water saturation on deterioration of welded tuff due to freeze–thaw action. Cold Reg Sci Technol, 38:127-136. doi: 10.1016/j.coldregions.2003.10.001
  • Coussy, O. (2006) Deformation and stress from in-pore drying-induced crystallization of salt. J Mech Phys Solids, 54:1517–1547. doi: 10.1016/j.jmps.2006.03.002
  • Çelik, M.Y. ve Kaçmaz, A.U. (2016) The investigation of static and dynamic capillary by water absorption in porous building stones under normal and salty water conditions, Environmental Earth Sciences, 75:307. doi: 10.1007/s12665-015-5132-x
  • Çelik, M.Y. ve Yılmaz, S. (2018) Statik, tuzlu ve asidik sulu ortamların Afyonkarahisar yöresinde yapı taşı olarak kullanılan gözenekli yapıtaşlarının kılcal su emme potansiyeline etkisi, (Influence of the static, salty, acidic hydrous environments on the capillarity potential of the porously building stone,) Journal of the Faculty of Engineering and Architecture of Gazi University, 33(2), 591-607. doi: 10.17341/gazimmfd.416369
  • Çobanoğlu, İ. (2015) Prediction and identification of capillary water absorption capacity of travertine dimension stone, Arabian Journal of Geosciences, 8: 10135. doi: 10.1007/s12517-015-1902-8
  • Derluyn, H. Moonen, P. Carmeliet, J. (2014) Deformation and damage due to drying induced salt crystallization in porous limestone, J. Mech. Phys. Solids, 63:242–255. doi: 10.1016/j.jmps.2013.09.005
  • Gökaltun, E. (1999) Atmosferik kirleticilerin kuru ve ıslak çökelme mekanizmalarının kireçtaşlarındaki parlaklık kaybına etkisi. BAÜ Fen Bilimleri Enstitüsü Dergisi, Cilt. 1(1), 134-156.
  • Hall, C. ve Hoff, W.D. (2012) Water transport in brick, stone and concrete, 2nd ed. pp 362. Taylor & Francis, London and New York, CRC Press.
  • Iñigo, A.C., Vicente, M.A. ve Rives, V. (2000) Weathering and decay of granitic rocks: its relation to their pore network, Mechanics of Materials, 32, 555-560. doi: 10.1016/S0167-6636(00)00027-2
  • Ioannou, I. ve Hoff, W.D. (2008) Water repellent influence on salt crystallisation in masonry, Proceedings of the Institution of Civil Engineers - Construction Materials, 161, 17–23.
  • Ioannou, I., Andreou, A., Tsikouras, B. ve Hatzipanagiotou, K. (2009) Application of the sharp front model to capillary absorption in a vuggy limestone, Engineering Geology, 105, 20–23. doi: 10.1016/j.enggeo.2008.12.008
  • Juhász, P., Kopecskó, K. ve Suhajda, Á. (2014) Analysis of capillary absorption properties of porous limestone material and its relation to the migration depth of bacteria in the absorbed biomineralizing compound, Periodica Polytechnica Civil Engineering, (58)2, 113-120. doi: 10.3311/PPci.7020
  • Graue, B., Siegesmund, S. ve Middendorf, B. (2011) Quality assessment of replacement stones for the cologne cathedral: mineralogical and petrophysical requirements, Environmental Earth Sciences, 63:1799–1822. doi: 10.1007/s12665-011-1077-x
  • Le Bas, M.J., Le Maitre, R.W. ve Woolley, A.R. (1992) The construction of the total alkalisilica chemical classification of volcanic rocks, Mineralogy and Petrology, doi: 46:1-22.10.1007/BF01160698
  • Licchelli, M., Malagodi, M., Weththimuni, M.L. ve Zanchi, C. (2013) Water-repellent properties of fluoro elastomers on a very porous stone. Effect of the application procedure. Progress in Organic Coatings, 76, 495–503. doi: 10.1016/j.porgcoat.2019.04.006
  • Karagiannis, N., Karoglou, M., Bakolas, A. ve Moropoulou, A. (2016) Effect of temperature on water capillary rise coefficient of building materials, Building and Environment, 106:402-408. doi: 10.1016/j.buildenv.2016.07.008
  • Karoglou, M., Moropoulou, A., Giakoumaki, A. ve Krokida, M.K. (2005) Capillary rise kinetics of some building materials, Journal of Colloid and Interface Science, 284, 260– 264. doi: 10.1016/j.jcis.2004.09.065
  • Kılıç, İ. ve Gültekin, A. H. (2009) Effects of surface protection resin on water absorption and strenght of sandstone. 5th International Advanced Technologies Symposium, Karabuk University, 2196-2199.
  • Klopfer, H. (1985) Feuchte, In: Lutz P et al (eds) Lehrbuch der Bauphysik, Teubner, Stuttgart, 329–472.
  • Mertz, J.D. (1991) Structures de porosité et propriétés de transport dans les grès, Thèse de doctorat de l’Université Louis Pasteur, Starsbourg.
  • Moreno, F., Vilela, S.A.G., Antunes, A.S.G. ve Alves, C.A.S. (2006) Capillary-Rising salt pollution and granitic stone erosive decay in the parish church of Torre de Moncorvo (NE Portugal), Journal of Cultural Heritage, 7:56–66. doi: 10.1016/j.culher.2005.10.006
  • Mosquera, MJ. Rivas, T. Priet, B. ve Silva, B. (2000) Capillary rise in granitic rocks: Interpretation of kinetics on the basis of pore structure, Journal of Colloid and Interface Science, 222,41-45. doi: 10.1006/jcis.1999.6612
  • Nicholson, D.T. (2001) Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones, Earth Surface Processes and Landforms, 26, 819- 838. doi: 10.1002/esp.228
  • Ordoñez, S., Fort, R. ve García del Cura, M.A. (1997) Pore size disrtibution and the durability of a porous limestone, Quarterly Journal of Engineering Geology, 30, 221-230. doi: 10.1144/GSL.QJEG.1997.030.P3.04
  • Pérez, N.A. Lima, E. Bosch, P. ve Méndez-Vivar, J. (2014) Consolidating materials for the volcanic tuff in western Mexico, Journal of Cultural Heritage, 15, 352–358. doi: 10.1016/j.culher.2013.07.010
  • Peruzzi, R. Poli, T. ve Toniolo, L. (2003) The experimental test for the evaluation of protective treatments: a critical survey of the “capillary absorption index”, Journal of Cultural Heritage, 4:251–254. doi: 10.1016/S1296-2074(03)00050-5
  • Pinna, D. Salvadori, B. ve Porcinai, S. (2011) Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble, Construction and Building Materials, 25, 2723-2732. doi: 10.1016/j.conbuildmat.2010.12.023
  • Siegesmund, S. ve Dürrast, H. (2011) Physical and mechanical properties of rocks. in:stone in architecture, 4th edition, Siegesmund S., Snethlage R. eds., Berlin: Springer, 97– 225.
  • Thaulow, N. ve Sahu, S. (2004) Mechanism of concrete deterioration due to salt crystallization. Mater Charact, 53:123–127. doi: 10.1016/j.conbuildmat.2014.06.011
  • Thomachot-Schneider, C. Gommeaux, M. Fronteau, G. Oguchi, C.T. Eyssautier, S. ve Kartheuser, B. (2011) A comparison of the properties and salt weathering susceptibility of natural and reconstituted stones of the Orval Abbey (Belgium), Environmental Earth Sciences, 63, 1447-1461. doi: 10.1007/s12665-010-0743-8
  • Tomašić, I. Lukić, D. Peček, N. ve Kršinić, A. (2011) Dynamics of capillary water absorption in natural stone, Bulletin of Engineering Geology and the Environment, 70:673– 680. doi: 10.1007/s10064-011-0355-x
  • TS EN 1936. (2010) Doğal Taşlar-Deney Yöntemleri-Gerçek Yoğunluk, Görünür Yoğunluk, Toplam ve Açık Porozitelilik Tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 13755. (2014) Doğal Taşlar-Deney Yöntemleri-Atmosfer Basıncında Su Emme Tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 14579. (2006) Doğal Taşlar-Deney Yöntemleri-Ses Hızı İlerlemesinin Tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 1926. (2013) Doğal Taşlar-Deney Yöntemleri-Tek Eksenli Basınç Dayanımı Tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 1925. (2000) Doğal Taşlar- Deney metotları-Kılcal Etkiye Bağlı Su Emme Katsayısının Tayini, Türk Standartları Enstitüsü, Ankara.
  • Tulliani, J. M. Serra, C.L. ve Sangermano, M. (2014) A visible and long-wavelength photocured epoxy coating for stone protection, Journal of Cultural Heritage, 15, 250–257. doi: 10.1016/j.culher.2013.07.003
  • Washburn, E.W. (1921) The dynamics of capillary flow, Physical Review Journals, 17:273–283. doi: 10.1103/PhysRev.17.273
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ