Polianilin İle Fonksiyonelleştirilmiş Karbon Nanotüp/PDMS Nanokompozitlerin Dielektrik Özellikleri

Son yıllarda, yüksek uzunluk/çap oranı ile hafif ve sağlam kompozitler hazırlanmasını mümkün kılan karbon nanotüpler, yüksek ısıl ve elektriksel iletkenlikleri gibi benzersiz özelliklerinden dolayı iletkenlik veya dielektrik özellikleri yüksek polimer nanokompozitlerin üretiminde kullanılan bir malzeme olarak ortaya çıkmıştır. Bununla birlikte, bu malzemelerle polimerik nanokompozitlerin hazırlanması sırasında bazı problemlerle karşılaşılmaktadır. En büyük sorunlardan biri, bu iletken malzemeleri hazırladıktan veya polimere ekledikten sonra, iletken yapılarınedeniyle topaklanma, topak oluşturma eğilimi göstermeleridir. Bu nedenle, bu çalışmada ilk olarak, çok duvarlı karbon nanotüpler (MWCNT'ler) polianilinin iletken formu (PANI) ile fonksiyonelleştirilmiştir. Ardından, farklı konsantrasyonlarda fonksiyonelleştirilmiş çok duvarlı karbon nanotüplere sahip nanokompozit poli(dimetil siloksan) (PDMS) polimer filmler hazırlanmıştır. Daha sonra ise, filmlerin yapısal, morfolojik, elektriksel ve dielektrik özellikleri karakterize edilmiştir. Sonuç olarak, sadece % 1,5 PANI-CNT ilavesiyle, PDMS'nin dielektrik sabiti 1 Hz'de 47 kat arttırılmıştır. Burada ortaya konulduğu gibi dielektrik filmler kapasitörler, esnek elektronik, dielektrik elastomer ve yapay kas uygulamalarında kullanılabilir.

DIELECTRIC PROPERTIES OF POLYANILINE-FUNCTIONALIZED CARBON NANOTUBE/PDMS NANOCOMPOSITES

In recent years, carbon nanotubes (CNTs) have emerged as materials that are often used in the preparation of polymer nanocomposites with conductive or advanced dielectric properties due to their unique properties including high temperature and electrical conductivity, which allows the production of very light and robust materials with a very high length-to-diameter ratio. However, during the preparation of polymeric nanocomposites with these materials, some problems are encountered. One of the major problems is that after preparing these conductivematerials or adding them into the polymer, they tend to aggregate, forming agglomerate, due to their conductive structures. Therefore, in this study, firstly, multi-walled carbon nanotubes (MWCNTs) were functionalized with conductive form of polyaniline (PANI) and subsequently, the poly (dimethyl siloxane) (PDMS) polymer nanocomposite films with different concentrations of functionalized multi-walled carbon nanotubes were prepared. Then, the structural, morphological, electrical and dielectric properties of the films were characterized. As a result, with the addition of only 1.5% PANI-CNT, the dielectric constant of PDMS was increased by 47-fold at 1 Hz. The dielectric films like presented here can be used in capacitors, flexible electronics, dielectric elastomers and artificial muscle applications.

___

  • 1. Bai, Y., Z.-Y. Cheng, V. Bharti, H. Xu and Q. Zhang (2000). "High-dielectric-constant ceramic-powder polymer composites." Applied Physics Letters 76(25): 3804-3806. https://doi.org/10.1063/1.126787
  • 2. Bodas, D. and C. Khan-Malek (2006). "Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments." Microelectronic engineering 83(4-9): 1277-1279. https://doi.org/10.1016/j.mee.2006.01.195
  • 3. Brochu, P. and Q. Pei (2010). "Advances in dielectric elastomers for actuators and artificial muscles." Macromolecular rapid communications 31(1): 10-36. https://doi.org/10.1002/marc.200900425
  • 4. Brosseau, C., P. Quéffélec and P. Talbot (2001). "Microwave characterization of filled polymers." Journal of Applied Physics 89(8): 4532-4540. https://doi.org/10.1063/1.1343521
  • 5. Carpi, F. and D. D. Rossi (2005). "Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder." IEEE Transactions on Dielectrics and Electrical Insulation 12(4): 835-843. DOI: 10.1109/TDEI.2005.1511110
  • 6. Chen, G. H., D. J. Wu, W. G. Weng and W. L. Yan (2001). "Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization." Journal of Applied Polymer Science 82(10): 2506-2513. https://doi.org/10.1002/app.2101
  • 7. Dang, Z.-M., J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li and G.-H. Hu (2012). "Fundamentals, processes and applications of high-permittivity polymer–matrix composites." Progress in Materials Science 57(4): 660-723. https://doi.org/10.1016/j.pmatsci.2011.08.001
  • 8. Dang, Z. M., Y. H. Lin and C. W. Nan (2003). "Novel ferroelectric polymer composites with high dielectric constants." Advanced Materials 15(19): 1625-1629. https://doi.org/10.1002/adma.200304911
  • 9. Dang, Z. M., L. Wang, Y. Yin, Q. Zhang and Q. Q. Lei (2007). "Giant dielectric permittivities in functionalized carbon‐nanotube/electroactive‐polymer nanocomposites." Advanced Materials 19(6): 852-857. DOI: 10.1002/adma.200600703
  • 10. Fan, P., L. Wang, S. Jia, F. Chen, J. Yang and M. Zhong (2017). "Encapsulated graphenes through ultrasonically initiated in situ polymerization: A route to high dielectric permittivity, low loss materials with low percolation threshold." Journal of Applied Polymer Science 134(12). https://doi.org/10.1002/app.44628
  • 11. Huang, C. and Q. Zhang (2004). "Enhanced dielectric and electromechanical responses in high dielectric constant all‐polymer percolative composites." Advanced Functional Materials 14(5): 501-506. https://doi.org/10.1002/adfm.200305021
  • 12. Huang, C., Q. Zhang, J. Y. Li and M. Rabeony (2005). "Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites." Applied Physics Letters 87(18): 182901. DOI:10.1063/1.2105997
  • 13. Huang, C., Q. Zhang and J. Su (2003). "High-dielectric-constant all-polymer percolative composites." Applied Physics Letters 82(20): 3502-3504. https://doi.org/10.1063/1.1575505
  • 14. Javadi, A., Y. Xiao, W. Xu and S. Gong (2012). "Chemically modified graphene/P (VDF-TrFE-CFE) electroactive polymer nanocomposites with superior electromechanical performance." Journal of Materials Chemistry 22(3): 830-834. https://doi.org/10.1039/C1JM13786G
  • 15. Kohlmeyer, R. R., A. Javadi, B. Pradhan, S. Pilla, K. Setyowati, J. Chen and S. Gong (2009). "Electrical and dielectric properties of hydroxylated carbon nanotube− elastomer composites." The Journal of Physical Chemistry C 113(41): 17626-17629. https://doi.org/10.1021/jp901082c
  • 16. Li, J. (2003). "Exchange coupling in P (VDF-TrFE) copolymer based all-organic composites with giant electrostriction." Physical review letters 90(21): 217601. DOI: 10.1103/PhysRevLett.90.217601
  • 17. Li, M., X. Huang, C. Wu, H. Xu, P. Jiang and T. Tanaka (2012). "Fabrication of two-dimensional hybrid sheets by decorating insulating PANI on reduced graphene oxide for polymer nanocomposites with low dielectric loss and high dielectric constant." Journal of Materials Chemistry 22(44): 23477-23484. https://doi.org/10.1039/C2JM34683D
  • 18. Li, R., C. Xiong, D. Kuang, L. Dong, Y. Lei, J. Yao, M. Jiang and L. Li (2008). "Polyamide 11/poly (vinylidene fluoride) blends as novel flexible materials for capacitors." Macromolecular rapid communications 29(17): 1449-1454. DOI: 10.1002/marc.200800253
  • 19. Maity, N., A. Mandal and A. K. Nandi (2017). "High dielectric poly (vinylidene fluoride) nanocomposite films with MoS 2 using polyaniline interlinker via interfacial interaction." Journal of Materials Chemistry C 5(46): 12121-12133. https://doi.org/10.1039/C7TC03593D
  • 20. Manna, R. and S. K. Srivastava (2017). "Fabrication of functionalized graphene filled carboxylated nitrile rubber nanocomposites as flexible dielectric materials." Materials Chemistry Frontiers 1(4): 780-788. DOI: 10.1039/C6QM00025H
  • 21. Misra, A., P. K. Tyagi, M. K. Singh and D. Misra (2006). "FTIR studies of nitrogen doped carbon nanotubes." Diamond and related materials 15(2-3): 385-388. https://doi.org/10.1016/j.diamond.2005.08.013
  • 22. Molberg, M., D. Crespy, P. Rupper, F. Nüesch, J. A. E. Månson, C. Löwe and D. M. Opris (2010). "High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler." Advanced Functional Materials 20(19): 3280-3291. https://doi.org/10.1002/adfm.201000486
  • 23. Rao, Y. and C. Wong (2002). Ultra high dielectric constant epoxy silver composite for embedded capacitor application. 52nd Electronic Components and Technology Conference 2002.(Cat. No. 02CH37345), IEEE. DOI: 10.1109/ECTC.2002.1008210
  • 24. Sain, P., R. Goyal, Y. Prasad, K. Sharma and A. Bhargava (2015). "Few‐layer‐graphene/polycarbonate nanocomposites as dielectric and conducting material." Journal of Applied Polymer Science 132(34). https://doi.org/10.1002/app.42443
  • 25. She, Y., G. Chen and D. Wu (2007). "Fabrication of polyethylene/graphite nanocomposite from modified expanded graphite." Polymer International 56(5): 679-685. https://doi.org/10.1002/pi.2191
  • 26. Stankovich, S., R. D. Piner, S. T. Nguyen and R. S. Ruoff (2006). "Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets." Carbon 44(15): 3342-3347. doi:10.1016/j.carbon.2006.06.004
  • 27. Stobinski, L., B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski and J. Judek (2010). "Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods." Journal of Alloys and Compounds 501(1): 77-84. doi:10.1016/j.jallcom.2010.04.032
  • 28. Taş, M., Z. İşlek Cin, E. D. Sam Parmak and A. Çelik Bedeloğlu (2018). "Fabrication of unilateral conductive and transparent polymer thin films decorated with nanomaterials for flexible electrodes." Polymer Composites 39(5): 1771-1778. https://doi.org/10.1002/pc.24109
  • 29. Thakur, Y., T. Zhang, C. Iacob, T. Yang, J. Bernholc, L. Chen, J. Runt and Q. Zhang (2017). "Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers." Nanoscale 9(31): 10992-10997. DOI: 10.1039/c7nr01932g
  • 30. Tsangaris, G., G. Psarras and N. Kouloumbi (1996). "Evaluation of dielectric behaviour of particulate composites consisting of polymeric matrix and conductive filler." Materials science and technology 12(7): 533-538. https://doi.org/10.1179/mst.1996.12.7.533
  • 31. Tsangaris, G., G. Psarras and N. Kouloumbi (1998). "Electric modulus and interfacial polarization in composite polymeric systems." Journal of Materials Science 33(8): 2027-2037. https://doi.org/10.1023/A:1004398514901
  • 32. Wang, D., Y. Bao, J.-W. Zha, J. Zhao, Z.-M. Dang and G.-H. Hu (2012). "Improved dielectric properties of nanocomposites based on poly (vinylidene fluoride) and poly (vinyl alcohol)-functionalized graphene." ACS applied materials & interfaces 4(11): 6273-6279. https://doi.org/10.1021/am3018652
  • 33. Wang, S., L. Liu, Y. Zeng, B. Zhou, K. Teng, M. Ma, L. Chen and Z. Xu (2015). "Improving dielectric properties of poly (vinylidene fluoride) composites: effects of surface functionalization of exfoliated graphene." Journal of Adhesion Science and Technology 29(7): 678-690. https://doi.org/10.1080/01694243.2014.1003497
  • 34. Wang, T., L. Yuan, G. Liang and A. Gu (2015). "Polyaniline coated carbon nanotube/graphene “sandwich” hybrid and its high-k epoxy composites with low dielectric loss and percolation threshold." Applied Surface Science 359: 754-765. https://doi.org/10.1016/j.apsusc.2015.10.115
  • 35. Worsley, K. A., P. Ramesh, S. K. Mandal, S. Niyogi, M. E. Itkis and R. C. Haddon (2007). "Soluble graphene derived from graphite fluoride." Chemical Physics Letters 445(1-3): 51-56. https://doi.org/10.1016/j.cplett.2007.07.059
  • 36. Wu, C., X. Huang, X. Wu, L. Xie, K. Yang and P. Jiang (2013). "Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density." Nanoscale 5(9): 3847-3855. https://doi.org/10.1039/C3NR00625E
  • 37. Xiao, P., M. Xiao and K. Gong (2001). "Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique." Polymer 42(11): 4813-4816. https://doi.org/10.1016/S0032-3861(00)00819-3
  • 38. Xie, X.-L., Y.-W. Mai and X.-P. Zhou (2005). "Dispersion and alignment of carbon nanotubes in polymer matrix: a review." Materials science and engineering: R: Reports 49(4): 89-112. https://doi.org/10.1016/j.mser.2005.04.002
  • 39. Xu, W., Y. Ding, Y. Yu, S. Jiang, L. Chen and H. Hou (2017). "Highly foldable PANi@ CNTs/PU dielectric composites toward thin-film capacitor application." Materials Letters 192: 25-28. https://doi.org/10.1016/j.matlet.2017.01.064
  • 40. Yang, C., Y. Lin and C. Nan (2009). "Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density." Carbon 47(4): 1096-1101. https://doi.org/10.1016/j.carbon.2008.12.037
  • 41. Yu, D., J. Wu, L. Zhou, D. Xie and S. Wu (2000). "The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend." Composites Science and Technology 60(4): 499-508. https://doi.org/10.1016/S0266-3538(99)00149-9
  • 42. Zakaria, M. R., M. H. Abdul Kudus and M. H. Zamri (2017). "Improvement of fracture toughness in epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina." Materials 10(3): 301. https://doi.org/10.3390/ma10030301
  • 43. Zhang, M., H. Yan, L. Yuan and C. Liu (2016). "Effect of functionalized graphene oxide with hyperbranched POSS polymer on mechanical and dielectric properties of cyanate ester composites." RSC advances 6(45): 38887-38896. https://doi.org/10.1039/C6RA01053A
  • 44. Zhang, Q., H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu and C. Huang (2002). "An all-organic composite actuator material with a high dielectric constant." Nature 419(6904): 284-287. https://doi.org/10.1038/nature01021
  • 45. Zhao, Y., M. Xiao, S. Wang, X. Ge and Y. Meng (2007). "Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites." Composites science and technology 67(11-12): 2528-2534. doi:10.1016/j.compscitech.2006.12.009
  • 46. Zhu, Y., S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff (2010). "Graphene and graphene oxide: synthesis, properties, and applications." Advanced materials 22(35): 3906-3924. https://doi.org/10.1002/adma.201001068
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

GÜNEŞ BACASI GÜÇ SANTRALLERİNDE TOPLAYICI EĞİMİNİN ÇIKIŞ GÜCÜNE VE SİSTEM VERİMİNE ETKİSİ

ERDEM CÜCE

DÜZELTME: “Kare Silindir Üzerinden Laminer Sürekli Akışta Blokaj Oranının Isı Transferi ve Akış Karakteristiklerine Etkisinin Sayısal Olarak İncelenmesi”

Mehmet Özgün KORUKÇU

BİNEK ARAÇLARDA KABİN İÇİ SICAKLIK VE SES PARAMETRELERİNİN SÜRÜCÜ VE YOLCU YORGUNLUĞUNA ETKİSİNİN ANALİZİ

Oğuzhan COŞKUN, Şule BEKİRYAZICI, Recep EKEN, Ahmet DEMİR, Emrah YÜRÜKLÜ, Güneş YILMAZ

GÜÇ KALİTESİ BOZULMALARINDA HARMONİK KESTİRİM YÖNTEMLERİNİN PERFORMANS ANALİZİ

Meltem KULU, Fahri VATANSEVER

DÖNÜŞÜM TABANLI HARMONİK KESTİRİM YÖNTEMLERİNDE GÜRÜLTÜ DUYARLILIĞI

Fahri VATANSEVER, Meltem KULU

Karıştırma Koşullarının Polimer Modifiye Bitümün Özellikleri Üzerindeki Etkileri: Genel Bir Bakış

Derya KAYA ÖZDEMİR, Ali TOPAL, Burak ŞENGÖZ

DÜŞÜK SICAKLIKTA JEOTERMAL ENERJİ KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN ENERJİ VE EKSERJİ ANALİZİ

Fatih AKKURT

VAN GÖLÜ EDREMİT KIYISI YÜZEY SULARINDA AĞIR METAL KİRLİLİĞİNİN ARAŞTIRILMASI

Ayşegül DEMİR YETİŞ, Ayşe ÖZGÜVEN

DEĞİŞEN DALGA PERİYOTLARI ETKİSİNDEKİ AÇIK DENİZ YAPILARININ DAVRANIŞININ İNCELENMESİ

İlyas Devran ÇELİK, Tevfik Burak KOCAMAN, Yusuf ÖZTÜRK

ÜZELTME: “KARE SİLİNDİR ÜZERİNDEN LAMİNER SÜREKLİ AKIŞTA BLOKAJ ORANININ ISI TRANSFERİ VE AKIŞ KARAKTERİSTİKLERİNE ETKİSİNİN SAYISAL OLARAK İNCELENMESİ”

M. Özgün KORUKÇU