ANALYSIS AND COMPARISON OF THE FUEL PROPERTIES OF BIO-OILS PRODUCED BY CATALYTIC FAST PYROLYSIS OF Tectona grandis

This study analyzed the fuel properties of bio-oils produced by catalytic fast pyrolysis of Tectona grandis in a fixed bed reactor at different temperatures (400 – 600 oC) and biomass to catalyst (b/c) weight ratios (90/10 – 60/40). Magnesium oxide (MgO) was used as catalyst. The product yields were determined. Bio-oils were characterized with their elemental composition and their Higher Heating Values (HHVs) as well as their basic fuel properties at maximum bio-oil yields conditions, including viscosity, flash point, moisture content, pH value and Conradson Carbon Residue (CCR), were determined and compared with those of non-catalytic pyrolysis bio-oils. The maximum yields of bio-oil at 400, 500 and 600 oC were 31.53, 40.87 and 29.30 wt.%, respectively, obtained at b/c ratios of 70/30, 80/20 and 70/30. Catalytic pyrolysis bio-oils possessed higher carbon and hydrogen but lower oxygen and sulphur contents than non-catalytic pyrolysis bio-oils. The HHVs of catalytic pyrolysis bio-oils (40.31 – 42.08 MJ/kg) were higher than those of non-catalytic bio-oils (36.47 – 36.76 MJ/kg). Catalyst reduced the viscosity (at 400 and 500 oC), moisture content and CCR (at 400 and 600 oC), and increased the pH value of bio-oils (at 400 and 600 oC). Catalytic pyrolysis deoxygenates and enhances the fuel properties of bio-oils.

Tectona grandis' in Katalitik Hızlı Piroliziyle Üretilen Biyo-Yağların Yakıt Özelliklerinin Analizi ve Karşılaştırılması

Bu çalışmada, farklı sıcaklıklarda (400 – 600 oC'de) ve farklı biyokütle/katalizör (b/c) ağırlık oranlarında (90/10 – 60/40) sabit yataklı bir reaktörde Tectona grandis'in katalitik hızlı pirolizi ile üretilen biyo-yağların yakıt özellikleri incelenmiştir. Katalizör olarak magnezyum oksit (MgO) kullanılmıştır ve ürün verimleri belirlenmiştir. Biyo-yağlar karakterize edilmiştir ve element bileşimleri, yüksek ısıtma değerleri, maksimum biyo-yağ verimi koşullarındaki temel yakıt özellikleri, viskozite, parlama noktası, nem içeriği, pH değeri ve Conradson karbon kalıntısı (CCR) değerleri incelenmiştir ve katalitik olmayan piroliz biyo-yağların değerleri ile karşılaştırılmıştır. 400, 500 ve 600 oC'de ve 70/30, 80/20 ve 70/30 b/c oranlarında elde edilen ağırlıkça maksimum biyo-yağ verimleri sırasıyla, %31,53, % 40,87 ve % 29,30 olarak bulunmuştur. Katalitik piroliz biyo-yağları, katalitik olmayan piroliz biyo-yağlarından daha yüksek karbon ve hidrojene ancak daha düşük oksijen ve kükürt içeriğine sahip bulunmuştur. Katalitik piroliz biyoyağlarının Yüksek Isıtma Değerleri (HHV) (40,31 – 42,08 MJ/kg), katalitik olmayan biyo-yağlardan (36,47 – 36,76 MJ/kg) daha yüksek belirlenmiştir. Katalizör, viskoziteyi (400 ve 500 oC'de), nem içeriğini ve CCR'yi (400 ve 600 oC'de) azaltmıştır ve biyo-yağların pH değerini (400 ve 600 oC'de) artırmıştır. Katalitik piroliz, biyo-yağların yakıt özelliklerini geliştirmektedir.

___

1. Anouti, S., Haarlemmer, G., Déniel, M. and Roubaud, A. (2016) Analysis of physicochemical properties of bio-oil from hydrothermal liquefaction of blackcurrant pomace, Energy & Fuels, 30(1), 398 – 406.

2. Bardalai, M. and Mahanta, D.K. (2015) A review of physical properties of biomass pyrolysis oil, International Journal of Renewable Energy Research, 5(1), 277 – 286.

3. Bridgwater, A.V. and Peacocke, G.V.C. (2000) Fast pyrolysis process for biomass, Renewable and Sustainable Energy Reviews, 4, 1 – 73.

4. Chukwuneke, J.L., Ewulonu, M.C., Chukwujike, I.C. and Okolie, P.C. (2019) Physicochemical analysis of pyrolyzed bio-oil from swietenia macrophylla (mahogany) wood, Heliyon, 5(6), 2019, accessed May 21, 2020, from https://doi.org/10.1016/j.heliyon.2019.e01790.

5. French, R. and Czernik, S. (2010) Catalytic pyrolysis of biomass for biofuels production, Fuel Processing Technology, 91, 25 – 32.

6. Garcia-Perez, M., Adams, T.T., Goodrum, J.W., Geller, D.P. and Das, K.C. (2007). Production and fuel properties of pine chip bio-oil/biodiesel blends, Energy & Fuels, 21, 2363 – 2372.

7. Garcὶa–Pèrez, M., Chaala, A. and Roy, C. (2002) Vacuum pyrolysis of sugarcane bagasse, Journal of Analytical and Applied Pyrolysis, (65), 111 – 136.

8. Güllü D. (2003) Effect of catalyst on yield of liquid products from biomass via pyrolysis, Energy Sources, 25(8), 753 – 765.

9. Kato, Y. Enomoto, R., Akazawa, M. and Kojima, Y. (2016) Characterization of Japanese cedar bio-oil produced using a bench-scale auger pyrolyzer, Springer Plus, 5, 1 – 11.

10. Khan, M.Z.H., Sultana, M., Al-Mamum, M.R. and Hasan, M.R., Pyrolytic waste oil and its diesel blend: fuel characterization, Journal of Environmental and Public Health, 2016, accessed May 10, 2020, from https://doi.org/10.1155/2016/7869080.

11. Kraiem, T., Hassen-Trabelsi, A. B., Naoui, S. and Belayouni, H. (2014). Characterization of syngas and bio-char: co-products from pyrolysis of waste fish fats, The Fifth International Renewable Energy Congress, IREC 2014, March 25 – 27, Hammamet, Tunisia.

12. Latake, P.T., Pawar, P. and Ranveer, A.C. (2015) The greenhouse effect and its impacts on environment, International Journal of Innovative Research and Creative Technology, 1(3), 333 – 337.

13. Lyu, G., Wu, S. and Zhang, H. (2015) Estimation and comparison of bio-oil components from different pyrolysis conditions, Frontiers in Energy Research, 3(28), 1 – 11.

14. Mythili, R., Subramanian, P. and Uma, D. (2017) Physicochemical properties of the bio-oil from Prosopis juliflora in fluidized-bed reactor, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(8), 843 – 849.

15. Nanda, S., Mohanty, P., Kozinski, J.A. and Dalai, A.K. (2014) Physico-chemical properties of bio-oils from pyrolysis of lignocellulosic biomass with high and slow heating rate, Energy and Environment Research, 4(3), 21 – 32.

16. Okekunle, P.O., Itabiyi, O.E., Adetola, S.O., Alayande, I.O., Ogundiran, H.O. and Odeh, K.G. (2016) Biofuel production by pyrolysis of cassava peel in a fixed bed reactor, International Journal of Energy for a Clean Environment, 17(1), 57 – 65.

17. Okekunle, P.O., Ogunsola, A.D., Babayemi, O.A., Abodunrin, E.D. and Daramola, O.M. (2021). Fuel characterization of bio-oil from fast pyrolysis of Tectona grandis in a fixed bed reactor at different temperatures (400 – 700 oC), International Journal of Energy for a Clean Environment, 22(3), 1 – 14.

18. Onay, Ö. (2014) Effects of catalyst on pyrolysis of Laurel (Laurus Nobilis L.) seed in a fixed bed tubular reactor, Chemical Engineering Transactions, 37, 127 – 132.

19. Oyebanji, J.A. and Ololade, Z.S. (2017) Fast Pyrolysis of Tectona grandis Wood for Bio-oil: Characterization and Bactericidal Potentials, Global Journal of Researches in Engineering: A Mechanical and Mechanics Engineering, 17(1), 31 – 37.

20. Pütün, E.(2010) Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst, Energy, 35, 2761 – 2766.

21. Pütün, E., Ateş, F. and Pütün, A.E. (2008) Catalytic pyrolysis of biomass in inert and steam atmospheres, Fuel, 87, 815 – 824.

22. Qiang, L., Xu-lai, Y. and Xi-feng, Z. (2008) Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk, Journal of Analytical and Applied Pyrolysis, 82, 191 – 198.

23. Samolada, M.C., Papafotica, A. and Vasalos, I.A. (2000) Catalyst evaluation for catalytic biomass pyrolysis, Energy & Fuels, 14, 1161 – 1167.

24. Shadangi, K.P. and Mohanty, K. (2014a) Thermal and catalytic pyrolysis of Karanja Seed to produce liquid fuel, Fuel, 115, 434 – 442.

25. Shadangi, K.P. and Mohanty, K. (2014b) Production and characterization of pyrolytic oil by catalytic pyrolysis of Niger seed, Fuel, 126, 109 – 115.

26. Shah, A., Darr, M.J., Dalluge, D., Medic, D. Webster, K. and Brown, R.C. (2012) Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored singlepass corn stover and cobs, Bioresource Technology, 125, 348 – 352.

27. Thangalazhy-Gopakumar, S., Adhikari, S., Ravindran, H., Gupta, R.B., Fasina, O., Tu, M. and Fernando, S.D. (2010) Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor, Bioresource Technology, 101, 8389 – 8395.

28. Wang S. (2013) High Efficiency Separation of Bio-oil. In M.D. Matovic (Ed.), Biomass Now – Sustainable Growth and Use (pp. 401-418). London: IntechOpen. https://doi.org/10.5772/51423.

29. Weerachanchai, P., Tangsathitkulchai, C. and Tangsathitkulchai, M. (2007) Fuel properties and chemical compositions of bio-oils from biomass pyrolysis, SAE Technical Paper 2001- 01-2024, 2007, https://doi.org/10.4271/2007-01-2024.

30. Yu, F., Deng, S., Chen, P., Liu, Y., Wan, Y., Olson, A., Kittleson, D. and Ruan, R. (2007) Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover, Applied Biochemistry and Biotechnology, 136 – 140, 957 – 970.

31. Zabeti, M., Nguyen, T.S., Lefferts, L., Heeres, H.J. and Seshan, K. (2012) In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina, Bioresource Technology, 118, 374 – 381.

32. Zhou, L., Yang, H., Wu, H., Wang, M. and Cheng, D. (2013) Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behaviour, Fuel Processing Technology, 106, 385 – 391.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

GÖRÜNTÜ İŞLEME TEKNİKLERİ VE ROBOT KOL İLE NESNELERİ KATEGORİLERİNE AYIRMA

Serhat Ömer SARIYILDIZ, AYŞE DEMİRHAN

ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU

Anıl ELELE, Fatma Olcay TOPAÇ

PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ

Ece SAĞIR KURT, Fatma Busra BUYUKBUBEROGLU, Nigar EYİT, Onur KİRAZ, Çağlar YILDIRIM, Çağlar YILDIRIM, Erdem GÖRGÜN

ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ

Can ÖZENSOY, Murat UYAR

PMMA ve ABS MALZEMELERİN LAZER İLETİM KAYNAĞI İLE BİRLEŞTİRİLMESİNDE PROSES PARAMETRE ETKİLERİNİN İNCELENMESİ

Ayça KÜÇÜKOĞLU, Celalettin YÜCE, FATİH KARPAT, Halil OKAR, İbrahim Emrah SÖZER, Niyazi KURT

ZAMAN MALİYET ÖDÜNLEŞİM PROBLEMİNİN EN AZ İNSAN MÜDAHALESİ İLE OLUŞTURULUP ÇÖZÜLMESİ

ÖNDER HALİS BETTEMİR, Tugay YÜCEL

GRANÜLER TABAKALARIN FONKSİYONEL DERECELENDİRİLMESİ İLE ESNEK ÜSTYAPILARDA YORULMA VE TEKERLEK İZİNDE OTURMA DAYANIMININ ARTIRILMASI

Murat BOSTANCIOĞLU

KATMANLI EĞRİ KOMPOZİT ÇERÇEVE YAPILARIN DİNAMİK KARARLILIK ANALİZİ

Oğuzhan DAŞ, Hasan ÖZTÜRK, Can GÖNENLİ

Doğrusal Profil Modifikasyonlarının Bir Düz Dişli Çarkın Dinamik Yüklenmesi Üzerine Etkisi

Oğuzhan DOĞAN, Onur KALAY, FATİH KARPAT

YAZILIM TANIMLI AĞLARDA BAĞLANTI KATMANI KEŞİF PROTOKOLÜNÜN İSTİSMARINA DAYALI TOPOLOJİ ZEHİRLEME SALDIRILARININ İNCELENMESİ

Mevlut Serkan TOK, Mehmet DEMİRCİ