AN ANALYTICAL APPROACH FOR MATERIAL SYNTHESIS BASED ON SHIELDING EFFECTIVENESS CHARACTERISTICS

Verilen bir ekranlama verimliliği karakteristiği ile frekans ve madde genişliği aralığı için, statik göreceli permitivite, göreceli yüksek frekans limiti permitivitesi, relaksasyon zamanı ve madde genişliği gibi ilgili parametreleri hesaplayarak Debye-benzeri eşdeğer homojen madde sentezlenmesi için bir analitik metod tasvir etmekteyiz. Parametre çıkarım prosedürünü, uygulanan metodun belirlenen frekans aralığında, istenen ekranlama verimliliği profilini üretebildiğini doğruladığımız bir sayısal örnekle anlatmaktayız.

Ekranlama Verimliliği Karakteristiği Baz Alınarak Madde Sentezlenmesi için Analitik Bir Yaklaşım

We describe an analytical method to synthesize a Debye-like equivalent homogeneous material by computing the associated parameters such as static relative permittivity, relative high-frequency limit permittivity, relaxation time, and the width of the material for a given shielding effectiveness specification and a given range of frequency as well as material width. We illustrate the parameter extraction procedure with a numerical example, in which we validate that the applied method is able to produce the desired SE profile within the specified frequency range.

___

  • 1. Balanis C. A. (1989) Advanced Engineering Electromagnetics, John Wiley and Sons, New York.
  • 2. De Paulis F., Nisanci M. H., Orlandi A., Koledintseva M. Y. and Drewniak J. L. (2014) Design of homogeneous and composite materials from shielding effectiveness specifications, IEEE Transactions on Electromagnetic Compatibility, 56(2), 343-351. doi: 10.1109/TEMC.2013.2280463
  • 3. De Rosa M., Mancinelli R., Sarasini F., Sarto M. S. and Tamburrano A. (2009) Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens, IEEE Transactions on Electromagnetic Compatibility, 51(3), 700-707. doi: 10.1109/TEMC.2009.2018125
  • 4. Isaacson, E. and Keller, H. B. (1994) Analysis of Numerical Methods, Courier Corporation, New York.
  • 5. Lagarkov A. N. and Sarychev A. K. (1996) Electromagnetic properties of composites containing elongated conducting inclusions, Phys. Rev. B., 53(9), 6318-6336. doi: 10.1103/PhysRevB.53.6318
  • 6. Mississippi State University (2015) Shielding. Access Address: http://www.ece.msstate.edu/~donohoe/ece4323shielding.pdf (Accessed on 27.07.2015).
  • 7. Nisanci M. H., De Paulis F., Koledintseva M. Y. and Orlandi A. (2011) Full-wave EMC simulations using Maxwell Garnett model for composites with cylindrical inclusions, IEEE Int. Symp. Electromagn. Compat., Long Beach, 14-19.
  • 8. Nisanci M. H., De Paulis F., Di Febo D and Orlandi A. (2012) Synthesis of composite materials with conductive aligned cylindrical inclusions, Progr. Electromagn. Res. Symp., Kuala Lumpur, 27-30.
  • 9. Ouchetto O., Zouhdi S., Bossavit A., Griso G. and Miara B. (2006) Modeling of 3-D periodic multiphase composites by homogenization, IEEE Trans. on Microw. Theory Tech., 54(6), 2615-2619. doi: 10.1109/TMTT.2006.872928