BAL ARISI ZEHRİNİN KOMPOZİSYONUNU VE ÜRETİM MİKTARINI ETKİLEYEN FAKTÖRLER

Bal arısı zehri (BAZ) diğer adı ile apitoksin, bal arısı (Apis mellifera L.)’nın koloni savunmasında kullanmak üzere ürettiği protein ve peptid ağırlıklı bir dış salgı ürünüdür. Apitoksin zengin kimyasal içeriği nedeniyle kozmetik ve sağlık alanında özellikle apiterapide oldukça yaygın kullanıma sahiptir. Apiterapide amaçlanan başarının elde edilmesi kullanılan ürünlerin nitelik ve niceliğiyle doğrudan ilişkilidir. Bu sebeple apiterapi amaçlı kullanım söz konusu olduğunda ham madde üretiminden son ürüne kadarki sürecin kontrollü ve kalite standartlarına uygun yapılması büyük önem taşımaktadır. Türkiye’de bal arısı zehrinin ticari üretimi son günlerde gündeme gelen bir konudur. Bu nedenle gerek zehir üretim miktarı gerekse zehrin içerik bakımından kalitesini etkileyen faktörler konusunda tartışmalar mevcuttur. Bu derlemede bal arısı zehrinin içeriğini ve üretim miktarını etkileyen faktörleri belirlemek için yapılan önceki çalışmalar taranarak bu tartışmalara çözüm önerileri oluşturulması amaçlanmıştır. Çalışmalarda bal arısı zehrinin üretiminde kullanılan cihazların, zehir toplama cihazının kovandaki konumunun, hasat periyodu ve hasat saatinin, mevsimsel değişimin, bal arısı ırkı ve davranışlarının, arı yaşının ve depolama koşullarının zehir miktar ve kalitesi üzerine etkisi ayrıntılı olarak ele alınmıştır. Ayrıca zehir toplamanın koloni performansı ve davranışı üzerine etkisi de araştırılarak detaylı bilgi verilmeye çalışılmıştır.Anahtar Kelime: Apitoksin, bal arısı zehri, doğru üretim, teknik, kalite,

Factors Affecting the Composition and Production Amount of Honey Bee Venom

Honey bee venom (BAZ), also known as apitoxin, is a protein and peptide-rich external secretion produced by the honey bee (Apis mellifera L.) for use in colony defense. Due to its rich chemical content, apitoxin has widespread use in cosmetics and health, especially in apitherapy. Achieving the intended success in apitherapy is directly related to the quality and quantity of the products used. For this reason, when it uses for apitherapy treat, it is crucial that the process from raw material production to the end product is controlled and in accordance with quality standards. The honey bee venom production is a newly emerged product for commercial production in Turkey. For this reason, there are debates about the factors affecting the quality of the venom in terms of both the amount of production and the composition of the venom. In this review, it is aimed to create solutions to these discussions by searching the previous studies conducted to determine the content of honey bee venom and the factors affecting the production amount. In the studies, the effects of the devices used in the production of honey bee venom, the site of the venom collection device in the hive, the collection period and collection time, seasonal change, honey bee race and behavior, bee age, and storage conditions on the amount and quality of the venom were discussed in detail. In addition, detailed information was aimed to be given by investigating the effect of venom collection on colony performance and behavior.

___

  • Abdela N, Jilo K. 2016. Bee venom and its therapeutic values: a review. Advances in Life Science and Technology, 44:18–22.
  • Abusabbah, M., Hong Lau, W., Mahmoud, MEE., Salih, AM., Omar, D. 2016. Prospects of using carbohydrates as supplemented-diets and protein rich mixture as alternative-diet to ımprove the quality of venom produced by Apis cerana L. J. Entomol. Zool. Stud., 4(3): 23–26.
  • Ali, M. 2012. Studies on Bee Venom and Its Medical Uses. International Journal of Advancements in Research & Technology, 1(2): 1–15.
  • Bachmayer, H., Kreil, G., Suchanek, G. 1972. Synthesis of promelittin and melittin in the venom gland of queen and worker bees: Patterns observed during maturation. Journal of Insect Physiology, 18(8): 1515–1521. https://doi.org/10.1016/0022-1910(72)90230-2.
  • Badawy, EAMA., ElBassiony, MN., Mahfouz, HM., Abou El-Enain, HT. 2016. Effect of Some Types of Protein Nutrition on the Productivity of Honey Bee Venom. Sinai Journal of Applied Sciences, 5(3): 385–392. https://doi.org/10.21608/sinjas.2016.78660.
  • Bahreini, R., Fakhimzadeh, K., Nowzary, J., Nehzati, GA. 2000. Design and construction of a venom collecting electric cage and its effects on honey production in honeybee colonies. Iranian J. Agr. Sc., 31(2): 333–339.
  • Bellik, Y. 2015. Bee Venom: Its Potential Use in Alternative Medicine. Anti-Infective Agents, 13(1), 3–16. https://doi.org/10.2174/2211352513666150318234624.
  • Benton, AW., Morse, RA., Stewart, JD. 1963. Venom collection from honey bees. Science, 142(3589): 228–230. https://doi.org/10.1126/science.142.3589.228.
  • Benton, AW., Morse, RA. 1968. Venom toxicity and proteins of the genus Apis. J. Apic. Res., 7(3): 113–118.
  • Bogdanov, S. 2015. Bee venom: Composition, health, medicine: A review. Peptides, 1: 1–20.
  • Bogdanov, S. 2016. Bee venom: Production, composition, quality. In: The bee venom book, Chapter 1, Bee product science. Muehlethurnen, Switzerland. Retrieved from May 2017. http://www.bee-hexagon.net/venom/production-compostion-quality/
  • Brandeburgo, MAM. 1992. A safe device for extracting venom from honey bees. Bee World, 73:3, 128–130, DOI: 10.1080/0005772X.1992.11099126.
  • El-Bassiony, MN., Mahfouz, HM., Abou El-Enain, HT., Badawy, EA. 2016. Study some factors which affecting of increase secretion of honey bee worker venom gland. Journal of Plant Protection and Pathology, 7(8): 541–547. https://doi.org/10.21608/jppp.2016.51219.
  • Fakhim, ZK. 1998. Improved device for venom extraction. Bee World, 79(1): 52–56.
  • Ferreira Junior, RS., Sciani, JM., Marques-Porto, R., Lourenço, AJ., Orsi, RDO., Barraviera, B., Pimenta, DC. 2010. Africanized honey bee (Apis mellifera) venom profiling : Seasonal variation of melittin and phospholipase A2 levels. Toxicon, 56(3): 355–362. https://doi.org/10.1016/j.toxicon.2010.03.023.
  • Gajski, G. ve Garaj-Vrhovac, V. 2009. Radioprotective Effects of Honeybee Venom (Apis mellifera) Against 915-MHz Microwave Radiation–Induced DNA Damage in Wistar Rat Lymphocytes: In Vitro Study International Journal of Toxicology, 28(2): 88–98. DOI: 10.1177/1091581809335051.
  • Galuszka, H. 1972. The research on a most effective method of the collection of bee venom by means of electric current. Zoologica Pol. 22(12): 53–69.
  • Genç, F., Cengiz, MM. 2019. Bal arısı (Apis mellifera L.) Anatomisi, genetik ve ıslahı ile ana arı yetiştiriciliği. Doç. Dr. Atilla ATİK (Ed.). Çankaya / Ankara: Gece Kitaplığı. ISBN: 978-605-288-857-5.
  • Gençay Çelemli, Ö. 2018. Türkiye’de Hızla Büyüyen Sektör: Arı Ürünlerine Genel Bir Bakış. Bölüm 3- Arı Ürünleri II, Kısım 2. Arı Zehiri syf; 84-87. Aslı Özkök (Editor). Ankara: Palme Yayın Dağıtım 2018, pp.208. ISBN: 978-975-491-463-4.
  • Graaf, DC., Brochetto Braga, MRB., Magalhᾶes de Abreu, RM., Blank, S., Bridts, CH., De Clerck, LS., Devreese, B., Ebo, DG., Ferris, TJ., Hagendorens, MM., Justo Jacomini, DLJ., Kanchev, I., Kokot, ZK., Matysiak, J., Mertens, C., Sabato, V., Van Gasse, AL., Van Vaerenbergh, M. 2020. Standard methods for Apis mellifera venom research. In V. Dietemann, P. Neumann, N. L. Carreck, & J. D. Ellis (Eds.) Journal of Apicultural Research. 3(2):1–31. https://doi.org/10.1080/00218839.2020.1801073.
  • Haggag, SI., Abed Al-Fattah, MA., Ewies, MA., El-feel, MA. 2015. Effect of honeybee venom collection from different races on honey area. Academic Journal of Entomology, 8(4): 190–192. https://doi.org/10.5829/idosi.aje.2015.8.4.10242.
  • Han, SM., Lee, KG., Yeo, JH., Kweon, HY., Woo, SO., Lee, ML., Lee, MY., Kim, CG. 2007. Device for collecting bee venom. WIPO Patent WO2007037566A1, 5 Nisan 2007.
  • Hussein, A., El-Ansari, M. Zahra, A. 2019. Effect of the Honeybee Hybrid and Geographic Region on the Honey Bee Venom Production. Journal of Plant Protection and Pathology, 10(3): 171–176. https://doi.org/10.21608/jppp.2019.40922.
  • Hwang, DS., Kim, SK. Bae, H. 2015. Therapeutic Effects of Bee Venom on Immunological and Neurological Diseases. Toxins, 7:2413–21.
  • Kasozi, K.I., Niedbała, G., Alqarni, M., Zirintunda, G., Hetta, HF., Mbiydzenyuy, NE., Batiha, GE. 2020. Bee venom a potential complementary medicine candidate for SARS-CoV-2 infections. 8(December). https://doi.org/10.3389/fpubh.2020.594458.
  • Kekeçoğlu, M., Çaprazlı, T., Samancı, T., Tanuğur Samancı, AE., Yorulmaz Önder, E. 2021. Quality affecting factors on honeybee venom. Under-review status.
  • Kim, H., Park, S. Lee, G. 2019. Potential Therapeutic Applications of Bee Venom on Skin Disease and Its Mechanisms: A Literature Review. Toxins, 11(374): 2–29.
  • Kokuludağ, A. 2015. Arı Ürünleri ve Sağlık (Apiterapi). Bölüm 21- Arı Zehiri İçeriği ve Tıbbi Özellikleri. Banu Yücel ve Eren Akçiçek (Editor). syf. 147–172. Sidas Medya Ltd. Şti- İzmir. ISBN: 978-605-5267-26-1.
  • Krell, R. 1996. Value-added products from beekeeping. SAO Agricultural Services Bulletin. Food and Agriculture Organization of the United Nation, Rome.
  • Krivtsov, N. ve Lebedev, V. 1995. The Bee Products. Editing House, Niwa Niwa, Russia.
  • Kumar, NR., Devi, A. 2014. A study on biochemical composition of the sting gland (poison gland) and the reservoir (poison sac) of the dwarf honey bee Apis florea F. workers. Journal of Applied and Natural Science, 6(1): 101–105. https://doi.org/10.31018/jans.v6i1.382.
  • Kumar, NR., Devi, A., Kriti, H., Kriti, N. 2014. Comparative Biochemical Studies on the Poison Glad and Poison Sac of the Worker Bees of Three Different Apis Species (Apis dorsata, Apis mellifera and Apis florea). International Journal of Therapeutic Applications, 16: 8–16.
  • Kokot, Z. J., Matysiak, J. 2009. Simultaneous determination of major constituents of honeybee venom by LCDAD. Chromatographia, 69 (11-12), 1401- 1405.
  • Lee, JD., Kim, SY., Kim, TW., Lee, SH., Yang, HI., Lee, DI., Lee, YH. 2004. Anti-inflammatory effect of bee venom on type II collagen-induced arthritis. American Journal of Chinese Medicine, 32(3): 361–367. https://doi.org/10.1142/S0192415X04002016.
  • Li, J K. 2000. Technology for royal jelly production. Am. Bee J. 140(6): 469–472.
  • Lima, WG., Brito, JC. M., da Cruz Nizer, WS. 2020. Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID-19 (SARS-CoV-2). Phytotherapy Research, 743–750. https://doi.org/10.1002/ptr.6872.
  • Markovic, O., Molnar, L. 1954. Isolation and determination of honey bee poison. Chemicke Zvesti, 8: 80–98.
  • Maulana, E., Nurussa’Adah, Wardana, AK., Khuzain, M., Prasetyo, G., Anwarudin, ME. 2018. Bee venom harvesters device integrated with solar cell. Electrical Power, Electronics, Communications, Controls and Informatics Seminar, EECCIS 2018, 123–126. https://doi.org/10.1109/EECCIS.2018.8692802.
  • Miao, XQ. 1983. Investigation on the collection of honeybee venom using an electrical shock apparatus. Journal of Fujian Agricultural College, 12(4): 323–236.
  • Mohanny, KM. 2005. Investigations on propolis and bee venom produced by two Hybrids of honey bee with reference to a new device for bee venom collection. Ph.D. thesis, Faculty of Agriculture EL- Fayoum , Cairo Univ., 134 pp.
  • Mohanny, KM. 2015. Different colors of glass plates and their position in the hive for production of bee venom. (Unpublished data) (Son erişim tarihi: 06.04.2021) https://www.researchgate.net/publication/315628564_Different_colors_of_glass_plates_and_their_position_in_the_hive_for_production_of_bee_venom.
  • Nobre, AAB. 1990. A device to provoke venom release from honeybees. Bee world, 71(4): 151–152. https://www.cabdirect.org/cabdirect/abstract/19930512931.
  • Nowar, EE. 2016. Venom glands parameters, venom production and composition of honeybee Apis mellifera L. Affected by Substitute Feeding. Middle East Journal of Agriculture Research, 5: 596–603.
  • Pacakova, V., Štulík, K., Hau, P. T., Jelinek, I., Vinš, I., Sýkora, D.1995. Comparison of high-performance liquid chromatography and capillary electrophoresis for the determination of some bee venom components. Journal of Chromatography A, 700 (1), 187-193.
  • Oluwaseyi, IG., Alebiosu, EO. 2020. Effect of Melittin and Apamin Co-therapy on the inhibition of coronavirus cell mediated entry- a potential viable management for covid-19. Project: Alternative Epidemic Management Path for Coronaviruses Management, (April). https://doi.org/10.6084/m9.figshare.12151974.
  • Omar, EM. 2020. Anticipated factors affecting extraction of venom from honey bees colonies by electrical impulses. Eslam. Egypt. Acad. J. Biolog. Sci., 13(4): 213–220.
  • Onari, P., Zaluski, R., Bovi, TS., Orsi, RO. 2016. Apitoxin harvest affects population development but not the hygienic behavior of African-derived honey bees. Sociobiology, 63(1): 688–692. https://doi.org/10.13102/sociobiology.v63i1.739.
  • Owen, MD., Braidwood, J. L. 1974. A quantitative and temporal study of histamine and histidine in honey bee (Apis mellifera L.) venom. Can. J. Zool., 52: 387.
  • Owen, M.D., Braıdwood, J.L., Brıdges, A.R. 1977. Age dependent changes in histamine content of venom of queen and worker bees. J. Insect Physiol. 23(8): 1031–1035. https://doi.org/10.1016/0022-1910(77)90131-7.
  • Owen, MD. 1979. Relationship between age and hyaluronidase activity in the venom ofqueen and worker honey bees (Apis mellifera L.). Toxicon, 17, 94.
  • Owen, MD., Bridges, AR. 1982. Catecholamines in honey bee (Apis mellifera) and various vespid (Hymenoptera) venoms. Toxicon, 20(6): 1075–1084. https://doi.org/10.1016/0041-0101(82)90110-6.
  • Owen, MD., Sloley, BD. 1988. 5-Hydroxytryptamine in the venom of the honey bee (Apis mellifera L.): Variation with season and with insect age. Toxicon, 26(6): 577–581. https://doi.org/10.1016/0041-0101(88)90238-3.
  • Owen, MD., Pfaff, LA., Reisman, RE., Wypych, J. 1990. Phospholipase A2 in venom extracts from honey bees (Apis mellifera L.) of different ages. Toxicon, 28(7): 813–820. https://doi.org/10.1016/S0041-0101(09)80004-4.
  • Owen, MD., Praff, AL. 1995. Melittin synthesis in the venom system of the honey bee (Apis mellifera L.). Toxicon. 33(9): 1181–1188. https://doi.org/10.1016/0041-0101(95)00054-P.
  • Robson, CH. 1988. Bee venom collection apparatus. U.S. Patent US4,739,531, 26 April 1988.
  • Rybak-Chmielewska, H., Szczêsna, T. 2004. Hplc Study of Chemical Composition of Honeybee (Apis mellifera L.) Venom. Journal of Apicultural Science, 48(2): 103–109.
  • Rybak, M, Muszynska, J, Skubida, P., Marcinkowski, J. 1995. A technology for bee venom collection Pszczelinicze Zeszyty Naukowe. 39(2): 223–231.
  • Samancı, T. 2019. Anadolu balarısı (Apis mellifera anatoliaca)’ndan doğal olarak elde edilen arı zehirlerinin fizikokimyasal özelliklerinin belirlenmesi. Yüksek Lisans Tezi. Düzce Üniversitesi Fen Bilimleri Enstitüsü.
  • Sanad, RE. Mohanny, KM. 2013. The efficacy of a new modified apparatus for collecting bee venom in relation to some biological aspects of honeybee colonies. Journal of American Science, 9(10): 177–182.
  • Serrinha, V., Correia, SD. Marques, G. 2019. Productivity and economic analysis of a new intensive collector in the Portuguese market with implication of open innovation perspective. J. Open Innov. Technol. Mark. Complex, 5(3): 1–18. https://doi.org/10.3390/joitmc5030071.
  • Shaldam, MA., Yahya, G., Mohamed, NH., Abdel-Daim, MM., Al Naggar, Y. 2020. In silico screening of potent bioactive compounds from honey bee products against COVID-19 target enzymes. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12644102.v1.
  • Skubida, P., Muszynska, J., Rybak, M., Marcinkowski, J. 1995. Bee venom collection and its effect on the general output of the apiary and wintering. Pszczelnicze-Zeszyty-Naukowe, 39(2): 209–221.
  • Somwongin, S., Chantawannakul, P., Chaiyana, W. 2018. Antioxidant activity and irritation property of venoms from Apis species. Toxicon, 145: 32–39. https://doi.org/10.1016/j.toxicon.2018.02.049.
  • Son, DJ., Lee, JW., Lee, YH., Song, HS., Lee, CK., Hong, JT. 2007. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacology and Therapeutics, 115(2): 246–270. https://doi.org/10.1016/j.pharmthera.2007.04.004.
  • TSE (Türk Standartları Enstitüsü) (2005); ICS 65.140 Türk Standardı, TS 13126/Ocak 2005.
  • Varanda, EA., Tavares, DC. 1998. Radioprotection: mechanisms and radioprotective agents including honeybee venom. J. Venom Anim. Toxins. 4(1): 5–21. https://doi.org/10.1590/S0104-79301998000100002.
  • Zhang, W., Wang, X., Yang, S., Niu, Q., Wu, L., Li, Y., Zhou, J. 2019. Simultaneous quantification of five biogenic amines based on LC–MS/MS and its application in honeybee venom from different subspecies. Biomedical Chromatography, 34(2): 1–8. https://doi.org/10.1002/bmc.4740.
  • Zhou, B., Zhang, S., Su, C., Zhou, G., Zhou, BF., Zhang, S., Su, C., Zhou, GH. 2003. Effect of collection of venom by electric shocking on honeybee population, production of royal jelly and honey. Acta Agriculture Universitatis Jiangxiensis. 25(1):141-145. https://europepmc.org/article/cba/366770.
  • Zidan, HAE.-G., Mostafa, ZK., Ibrahim, MA., Haggag, SI., Darwish, DA., Elfiky, AA. 2018. Venom composition of Egyptian and Carniolan honeybee, Apis mellifera L. affected by collection methods. Egypt. Acad. J. Biolog. Sci., 11(4): 59–71. 10.21608/EAJBSA.2018.17733.
Uludağ Arıcılık Dergisi-Cover
  • Başlangıç: 2001
  • Yayıncı: U.Ü.Arıcılık Geliştirme-Uygulama ve Araştırma Merkezi
Sayıdaki Diğer Makaleler

Arı Poleni: Antioksidan Etkisi

Hidayet TUTUN, Muhammet Mükerrem KAYA, Melike Sultan USLUER, Hatice Ahu KAHRAMAN

BAL ARISI ZEHRİNİN KOMPOZİSYONUNU VE ÜRETİM MİKTARINI ETKİLEYEN FAKTÖRLER

Tuğçe ÇAPRAZLI, Meral KEKEÇOĞLU

Arı Sokmalarını Etkileyen Önemli Şifalı Bitkiler: Sistematik Derleme Çalışması

Aliasghar MANOUCHEHRI, Pegah SHAKIB, Fakher BIGLARYAN, Mohammadreza NAZER, Mohammad DARVISHI

BAL ARILARINDA PROBİYOTİK BAKTERİLERİN KULLANIMI

Ayşe Ebru BORUM

KESTANE (Castanea sativa) BALI ÖRNEKLERİNİN BOTANİK ORİJİNLERİNİN DOĞRULANMASI VE TOPLAM POLEN SAYILARI

Aslı ÖZKÖK, Nesrin ECEM BAYRAM

Güneybatı Ege Bölgesi’nde Nosema Türlerinin Mikroskobik ve Moleküler Olarak Belirlenmesi

Serengül KARTAL, Rahşan İVGİN TUNCA, Okan ÖZGÜL, Kemal KARABAĞ, Hasan KOÇ

Tunus'ta Toplanan Thymbra capitata L. ve Mentha pulegium L. Esansiyel Yağlarının Galleria mellonella L. Üzerine Etkisi

Sarra NCİBİ, Abir BEN AMOR, Faten BEN ABDELKADER

TUNCELİ BALLARININ COĞRAFİ İŞARET ÇALIŞMASI

Aslı ÖZKÖK, Ömür GENÇAY ÇELEMLİ, Golshan ZARE, Çiğdem ÖZENİRLER, Nazlı MAYDA, Kadriye SORKUN

ARICILIK FAALİYETLERİ ETKİSİ ALTINDA DÜZCE BAL ARISI POPÜLASYONLARINDAKİ VARYASYONLARIN MORFOMETRİK YÖNTEM İLE ARAŞTIRILMASI

Songül BİR, Meral KEKEÇOĞLU

Akarisit Amitraz ve Fluvalinat'ın Bal Arısı Apis mellifera'nın Üreme ve Verimliliğine Etkisi

Rustem ILYASOV, Sooho LİM, Myeong Lyeol LEE, Hyung Wook KWON, Alexey NİKOLENKO