Laboratuvarda seleksiyona maruz bırakılan avcı akar Neoseiulus californicus (Acari: Phytoseiidae)'da hexythiazox direnç mekanizmasının incelenmesi

Bu çalışmada laboratuar ortamında seleksiyona maruz bırakılaran N. californicus popülasyonu üzerinde hexythiazox direnci incelenmiştir. N. californicus popülasyonlarının LC50 ve LC60 değerleri ilaçlama kulesi kullanılarak yaprak disk metodu ile belirlenmiştir. Direnç oranları seleksiyona maruz bırakılan popülasyonların LC50 değerlerinin hassas popülasyonunun LC50 değerine bölünmesiyle belirlenmiştir. Seleksiyon çalışmasında, 14 defa hexythiazox uygulaması yapılan populasyonda hexythiazox’a karşı 64.04 kat direnç geliştiği tespit edilmiştir ve bu populasyon HEX14 olarak adlandırılmıştır. Sinerjistler,PBO, IBP ve DEM'in hexythiazox direnci üzerine olan etkileri incelenmiştir. Ayrıca laboratuar ve HEX14 popülasyonlarında glutathion S-transferaz, sitokrom P450 monooksigenaz ve asetilkolinesteraz enzimleri kinetik yöntemle, esteraz enzimi elektroforetik ve kinetik yöntemlerle belirlenmiştir. HEX14 popülasyonunda PBO, IBP ve DEM ile yapılan çalışma sonucunda sırasıyla 1.71, 3.25, 1.98 kat sinerjistik etki oranları belirlenmiştir. HEX14 popülasyonunun spirodiclofen, etoxazole, spiromesifen, propargite, clofentezine ve milbectin’e karşı gösterdiği çapraz direnç oranları sırasıyla, 8.12, 14.41, 17.96, 17.48, 12.67 ve 11.22 kat olarak bulunmuştur. HEX14 popülasyonunda hexhythiazox direncinin eksik baskın ve monogenik özellikte olduğu belirlenmiştir. Biyokimyasal testlerde,HEX14 popülasyonunda 3.27 kat esteraz, 2.35 kat GST, 2.02 kat sitokrom P450 monoksigenaz ve 3.34 kat AChE enzim aktivitesi bulunmuştur

Analysis of hexythiazox resistance mechanisms in a laboratory selected predatory mite Neoseiulus californicus (Acari: Phytoseiidae)

Hexythiazox resistance in a Neoseiulus californicus population selected in laboratory conditions was analyzed in the present study . LC50 and LC60 values of N. californicus were determined via the leaf disk method using a spray tower. Resistance ratios were determined by dividing the LC50 values of selected populations to the LC50 value of the laboratory population. Resistance ratio was increased to 64.04 -fold in selected population (named HEX14) after 14 selection cycles with hexythiazox. The effects of PBO, IBP and DEM were examined on hexythiazox resistance. Furthermore, glutathione S-transferase, cytochrome P450 monooxygenases and acetylcholinesterase enzymes were determined using kinetic methods and esterase enzyme was determined using electrophoretic and kinetic methods in laboratory and HEX14 populations. The study conducted with PBO, IBP and DEM in the HEX14 population showed that synergistic effect rates were 1.71, 3.25 and 1.98 -fold, respectively. The cross resistance ratios of the HEX14 population to spirodiclofen, etoxazole, spiromesifen, propargite, clofentezine and milbectin were 8.12, 14.41, 17.96, 17.48, 12.67 and 11.22 -fold, respectively. The hexythiazox resistance of the HEX14 population was incompletely dominant and monogenic. A 3.27 -fold esterase, 2.35 -fold GST and 2.02 -fold cytochrome P450 monooxygenase and 3.34 -fold AChE enzyme activity were detected in the HEX14 population in biochemical assays

___

  • Anber, H.A.I. & W.P.J. Overmeer, 1988. Resistance to organophosphates and carbamates in the predacious mite Amblyseius potentillae (Garman) due to insensitive acetylcholinesterase. Pesticide Biochemistry and Physiology, 31(1): 91-98.
  • Auger, P., R. Bonafos, S. Kreiter, & R., Delorme, 2005. A genetic analysis of moncozeb resistance in Typhlodromus pyri (Acari:Phytoseiidae). Experimental and Applied Acarology, 37: 83-91.
  • Ay, R. & M.O. Gürkan, 2005. Resistance to bifenthrin and resistance mechanisms of different strains of the two- spotted spider mite (Tetranychus urticae Koch) from Turkey. Phytoparasitica, 33: 237-244.
  • Boller, E.F., H. Vogt, P.Ternes, & C. Malavolta, 2005. Working document on selectivity of pesticides (Web sayfası: http://www.iobc wprs.org/ip_ipm/03022_IOBC_pesticide database), (Erişim tarihi: Ağustos 2013).
  • Bonafos, R., E. Serrano P. , Auger, & S. Kreiter, 2007. Resistance to deltamethrin, lambda-cyhalothrin and chlorpyriphos-ethyl in some populations of Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari:Phytoseiidae) from vineyards in the south-west of france. Crop Protection, 26: 169–172.
  • Bonafos, R., V. Vigues, E.. Serrano, & P.,Auger, 2008. Resistance monitoring to deltamethrin and chlopyrifos-ethly in 13 populations of Typhlodromus pyri Scheuten (Acari:Phytoseiidae) from vineyards in the southwest of france. Crop Protection, 27: 855-858.
  • Booth, L.H., S.D. Wratten, & P. Kehrli, 2007. Effects of reduced rates of two insecticides on enzyme activity and mortality of an aphid and its lacewing predator. Journal Economic Entomology, 100(1): 11-19.
  • Bradford, M.M., 1976. A rapid and sensitiv method for the quantitation of microgramm quantities of protein utilizing the principle of protein – dye inding. Analytical Biochemistry, 72: 248-254.
  • Campos, F.J. & C. Omoto, 2002. Resistance to hexythiazox in Brevipalpus phoenicis (Acari: Tenuipalpidae) from Brazilian citrus. Experimental and Applied Acarology, 26: 243–251.
  • Castagnoli, M., M. Liguori, S. & Simoni, 1999. Effect of two different host plants on biological features of Neoseiulus californicus (McGregor). International Journal of Acarology, 25: 145–150.
  • Castagnoli, M. & S., Simoni, 1999. Effect of long-term feeding history on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Experimental Applied Acarology, 23: 217-234.
  • Croft, B.A., A.W.A. Brown, & S.A. Hoying, 1976. Organophoshorus-resistance and its inheritance in the predaceous mite Amblyseius fallacies. Journal of Economic Entomology, 69: 64-68.
  • Dekeyser, M.A., 2005. Acaricide mode of action. Pest Management Science, 61: 103–110.
  • Demaeght, P., W. Dermauw, T. Tsakireli, J. Khajehali, R. Nauen, L. Tirry, J. Vontas, P. Lümmen, & T. Van Leuween, 2013. Molecular analysis resistance to acaricidal spirocylic tetranic acids in Tetranychus urticae: CYP392E10 metobolizes spirodiclofen, but not its corresponding enol. Insect Biochemical Molecular Biology, 43: 544-554.
  • Dunley, J.E., R.H. Messing, & B.A., Croft, 1991. Levels and genetics of organophosphate resistance in Italian and Oregon biotypes of Amblyseius andersoni (Acari:Phytoseeidae). Journal of Economic Entomology, 84: 750- 755.
  • Fournier. D., A. Cuany, M. Pralavorio, J.M. Bride, & J.B. Berge, 1987. Analysis of methidathion resistance mechanisms in Phytoseiulus persimilis A.H. Pesticide Biochemical and Physiology, 28: 271-278.
  • Georghiou, G.P., 1969. Genetics of resistance to insecticides in house flies and mosquitoes. Experimental Parasitology, 26: 224–255.
  • Goka, K.& A. Takafuji, 1992. Enzyme variations among Japanese populations of the two-spotted spider mites, Tetranychus urticae Koch. Applied Entomology Zoology, 27: 141–150.
  • Herron, G.A. & J. Rophail, 1993. Genetics of hexythiazox resistance in two spotted spider mite, Tetranychus urticae Koch. Experimental Applied Acarology,17(6): 423-431.
  • Herron, G.A., V. Edge, & J. Rophail, 1993. Clofentezine and hexythiazox resistance in Tetranychus urticae Koch in Australia. Experimental Applied Acarology,17(6): 433-440.
  • Hoy, M.A., 1985. Recent advances in genetics and genetic improvement of Phytoseiidae. Annual Review Entomoogy, l 30: 345-370.
  • Kang, C.Y., G. Wu, & T., Miyata, 2006. Synergism of enzyme inhibitors and mechanisms of insecticide resistance in Bemisia tabaci (Gennadius) (Hom.: Aleyrodidae). Journal Applied Entomology, 130: 377-385.
  • Kim, Y.J., S.H. Lee, S.W. Lee, & Y.J. Ahn, 2004. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae) cross-resistance and biochemical resistance mechanisms. Pest Management Science, 60: 1001-1006.
  • Kramer, T. & R. Nauen, 2011. Monitoring of spirodiclofen susceptibility in field populations of European red mites, Panonychus ulmi (Koch) (Acari: Tetranychidae), and the cross-resistance pattern of a laboratory-selected strain. Pest Management Science, 67: 1285–1293.
  • Kostiainen, T. & M.A. Hoy, 1995. Laboratory evaluation of a laboratory-selected organophosphate-resistant strain of Amblyseius finlandicus (Acari: Phytoseiidae) for possible use in finnish apple orchards. Biocontrol Science and Technology, 5: 297- 311.
  • Kumral, N.A., N.S. Gencer, H. Susurluk, C. & Yalcin, 2011. A comparative evaluation of the susceptibility to insecticides and detoxifying enzyme activities ın Stethorus gılvıfrons (Coleoptera: Coccinellidae) and Panonychus ulmi (Acarina:Tetranychidae). International Journal of Acaroogy,l 37: 255–268.
  • LeOra Software, 1994. Polo-pc: a user’ s guide to probit or logit analysis leora software 28 p Berkeley.
  • Liu, B., G. Jiang, Y. Zhang J., Li, X. Li, J. Yue, F. Chen, H. Liu, Li, H. S. Zhu, J. Wang, & C. Ran, 2011. Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). Plos One, 6(12): doi: e28516. doi:10.1371.
  • Mugo, H.M., E.M. El-Banhawy, L.W. Irungu, P.N. Ndegwa, & D.N., Mburu, 2011. Resistance of predacious mite, Euseıus kenyae (Acari: Phytoseiidae) to chlorpyrifos (Dursban) ın kenyan coffee farms. Jagst Vol 13: 53-64.
  • Oppenoorth F J, (1984) Biochemistry of insecticide resistance. Pesticide Biochemical and Physiology, 22: 187–193.
  • Pree, D.J., L.A. Bıttner, & K.J. Whıtty, 2002. Characterization of resistance to clofentezine in populations of european red mite from orchards in Ontario. Experimental and Applied Acarology, 27: 181-193.
  • Rauch, N. & R. Nauen, 2003. Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pesticide Biochemical and Physiology, 74: 91-101.
  • Reissig, W.H. & L.A. Hull, 1991. Hexythiazox resistance in a field population of european red mite (Acari: Tetranychidae) on apples. Journal of Economic Entomology, 84(3): 727-735.
  • Rose, R.L., R. Barbhaiya, G. Rock, & E. Hodgson, 1995. Cytochrome P-450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemical Physiology 51: 178–191.
  • Sanatgar, E., R.V., Shoushtari, A.A., Zamani, M. Arbabi, & E.S. Nejadian, 2011. Effect of frequent application of hexythiazox on predatory mite Phytoseiulus persimilis Athias - Henriot (Acari: Phytoseiidae). Acade Journal of Entomology, 4: 94-101.
  • Sato, E.M., T Miyata,. A. Kawai, & O., Nakano, 2000. Selection for resistance and susceptibility to methidathion and cross resistance in Amblyseius wormersleyi Schicha (Acari: Phytoseiidae). Applied Entomology Zoology, 35: 393-399.
  • Sato, E.M., T. Miyata, A. Kawai, & O., Nakano, 2001. Methidathion resistance mechanisms in Amblyseius womersleyi Schicha (Acari: Phytoseiidae). Pesticide Biochemical and Physiology, 69: 1–12.
  • Sato, E.M., T. Tanaka, & T. Miyata, 2006. Monooxygenase activity in methidathion resistant and susceptible populations of Amblyseius wormersleyi Schicha (Acari: Phytoseiidae). Experimental Applied Acarology, 39: 13-24.
  • Sato, E.M., T. Tanaka, & T.. Miyata, 2007. A cytochrome P450 gene involved in methidathion resistance in Amblyseius wormersleyi Schicha (Acari: Phytoseiidae). Pesticide Biochemical and Physiology, 88: 337-345.
  • Sayyed, A.H., A.K. Pahtan, & U. Faheem, 2010. Cross-resistance, genetics and stability of resistance to deltamethrin in a population of Chrysoperla carnea from Multan, Pakistan. Pesticide Biochemical and Physiology, 98: 325–332.
  • Stone, B.F., 1968. A formula determining degree of dominance in cases of monofactorial inheritance of resistance to chemeicals. Bull World Health Organis 38: 325-326.
  • Stumpf, N. & R. Nauen, 2002. Biochemical markers linked to abamaectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemical and Physiology, 72: 111-121.
  • Stumpf, N., P.W. Zebitz, W. Kraus, G.D. Moores, & R.. Nauen, 2001. Resistance to organophosphates and biochemical genotyping of acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemical and Physiology, 69: 131-142.
  • Tirello, P., A. Pozzebon, & C. Duso, 2012. Resistance to chlorpyriphos in the predatory mite Kampimodromus aberrans. Experimental Applied Acarology, 56: 1–8.
  • Van Leeuwen, T., V., Stıllatus, & L. Tırry, 2004. Genetic analysis and cross-resistance spectrum of a laboratory- selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology, 32: 249–261.
  • Winer, B.J., Brown, D.R., Michels, K.M., 1991. Statistical Principles in Experimental Design., Universty of New York, New York 552 pp.
  • Van Pottelberge, S., T. Van Leeuwen, R., Nauen, & L. Tirry, 2009. Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bulletin of Entomology Research, 99: 23–31.
  • Yamamoto, A., H. Yoneda, R., Hatano, & M. Asada, 1996. Realized heritability estimates of hexythiazox resistance in the citrus red mite Panonychus citri (McGregor). Journal of Pesticide Science, 21: 43-47.
  • Yu,S.J., 2008. “Insecticide Resistance,65-75” In: The Toxicology and Biochemistry of Insecticide. (Eds. Yu, S.J.) CRC Presd 230 pp.
Türkiye Entomoloji Dergisi-Cover
  • ISSN: 1010-6960
  • Başlangıç: 1977
  • Yayıncı: Galip KAŞKAVALCI
Sayıdaki Diğer Makaleler

Lethal effects of four insecticides on immature stages of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) in laboratory conditions

Aida AYUBI, Ali JOOYANDEH, Javad KARIMI, Gholamhossein MORAVVEJ

Faunistical, ecological and zoogeographical evaluations on the dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) of Kütahya province (Turkey)

Yakup ŞENYÜZ, Yalçın ŞAHİN

Akdeniz un güvesi Ephestia kuehniella Zeller 1879 (Lepidoptera: Pyralidae)'nın ergin biyolojisi üzerine manyetik alanın etkisinin belirlenmesi

Dilek PANDIR, Fahriye Sumer ERCAN, Recep ŞAHİNGÖZ

Türkiye'de Orius türleri ile örtüaltı patlıcan yetiştiriciliğinde zararlı Batı Çiçek Thripsi, Frankliniella occidentalis ile biyolojik mücadele

Mehmet KEÇECİ, M. Oktay GÜRKAN

Analysis of hexythiazox resistance mechanisms in a laboratory selected predatory mite Neoseiulus californicus (Acari: Phytoseiidae)

Sibel SALMAN YORULMAZ, Recep AY

Molecular identification of root-knot nematode Meloidogyne incognita from kiwi fruit orchards in Ordu province, Turkey

Faruk AKYAZI, Anıl Fırat FELEK

The effect of different pesticides on reproduction of entomopathogenic nematodes

Atwa Ahmed ATWA, Muhammed Mustafa SHAMSELDEAN, Falah Abdulkader YONİS

Organik domates yetiştiriciliğinde Kök-ur nematodları (Meloidogyne spp.)’na karşı bazı organik ve mikrobiyal gübrelerin nematisidal etkinlikleri

Aydın PEÇEN, İbrahim MISTANOĞLU, Galip KAŞKAVALCI

Laboratuvar şartlarında Chrysoperla carnea (Neuroptera: Chrysopidae) (Stephens)'nın ergin öncesi dönemleri uzerine dört insektisitin öldürücü etkileri

Aida AYUBI, Gholamhossein MORAVVEJ, Javad KARIMI

Monoterpenoid bileşiklerin, Kırma biti Tribolium confusum Jacquelin du Val. (Coleoptera: Tenebrionidae) üzerine fumigant toksisitesi

Özgür SAĞLAM, Nihal ÖZDER