Revised classification design of the Anatolian species of Nannospalax (Rodentia: Spalacidae) using RFLP analysis

Genetic differences in 2 regions (D-loop and cytochrome b) of mitochondrial DNA in Nannospalax xanthodon and Nannospalax ehrenbergi were determined using restriction fragment length polymorphism (RFLP) analysis. For 2 species distributed in Anatolia, 94 specimens from 62 populations of Nannospalax xanthodon and 2 populations of Nannospalax ehrenbergi were studied. To reveal genetic differences, the D-loop (626 bp) and cytochrome b (500 bp) regions of mitochondrial DNA were amplified and then cut by 4 different restriction endonuclease enzymes (BamH-I, Taq-I, Alu-I, and Msp-I). RFLP analysis revealed 4 haplotypes for the D-loop region and 8 haplotypes for the cytochrome b region in 94 specimens. According to the results of this study, N. nehringi, which is distributed in eastern Anatolia, is a valid species and not a synonym of N. xanthodon. A total of 2 additional species (N. nehringi and N. labaumei) occur with N. xanthodon and N. ehrenbergi; thus, Anatolian blind mole rats cannot be represented by only 2 species.

Revised classification design of the Anatolian species of Nannospalax (Rodentia: Spalacidae) using RFLP analysis

Genetic differences in 2 regions (D-loop and cytochrome b) of mitochondrial DNA in Nannospalax xanthodon and Nannospalax ehrenbergi were determined using restriction fragment length polymorphism (RFLP) analysis. For 2 species distributed in Anatolia, 94 specimens from 62 populations of Nannospalax xanthodon and 2 populations of Nannospalax ehrenbergi were studied. To reveal genetic differences, the D-loop (626 bp) and cytochrome b (500 bp) regions of mitochondrial DNA were amplified and then cut by 4 different restriction endonuclease enzymes (BamH-I, Taq-I, Alu-I, and Msp-I). RFLP analysis revealed 4 haplotypes for the D-loop region and 8 haplotypes for the cytochrome b region in 94 specimens. According to the results of this study, N. nehringi, which is distributed in eastern Anatolia, is a valid species and not a synonym of N. xanthodon. A total of 2 additional species (N. nehringi and N. labaumei) occur with N. xanthodon and N. ehrenbergi; thus, Anatolian blind mole rats cannot be represented by only 2 species.

___

  • Arslan A, Akan Ş, Zima J (2011). Variation in C-heterochromatin and NOR distribution among chromosomal races of mole rats (Spalacidae) from Central Anatolia, Turkey. Mamm Biol 76: 28–
  • Arslan E, Gülbahçe E, Arıkoğlu H, Arslan A, Bužan EV, Kryštufek B (2010). Mitochondrial divergence between three cytotypes of the Anatolian mole rat, Nannospalax xanthodon. Zool Middle East 50: 27–34.
  • Corbet GB (1978). The Mammals of the Palaearctic Region: A Taxonomic Review. London, UK: British Museum (Natural History).
  • Coşkun Y, Ulutürk S, Kaya A (2010). Karyotypes of Nannospalax (Palmer 1903) populations (Rodentia: Spalalacidae) from central eastern Anatolia, Turkey. Hystrix It J Mamm 21: 89–96. Coşkun Y, Ulutürk S, Yürümez G (2006). Chromosomal diversity in mole-rat of the species Nannospalax ehrenbergi (Rodentia: Spalacidae) from south Anatolia, Turkey. Mamm Biol 71: 244–250.
  • Doyle JJ, Doyle JL (1991). Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
  • Excoffier L, Smouse PE, Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.
  • Hadid Y, Nemeth A, Snir S, Pavlicek T, Csorba G, Kazmer M, Major A, Mezhzherin S, Rusin M, Coşkun Y et al. (2012). Is evolution of blind mole rats determined by climate oscillations? PLoS ONE 7: 1–7.
  • Hammer O, Harper DAT, Ryan PD (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electronica 4: 9.
  • Harrison DL, Bates PJJ (1991). Mammals of Arabia. 2nd ed. London, UK: Harrison Zoological Museum.
  • Ivanitskaya E, Coskun Y, Nevo E (1997). Banded karyotypes of mole rats (Spalax, Spalacidae, Rodentia) from Turkey: a comparative analysis. J Zool Sys Evol Res 35: 171–177.
  • Ivanitskaya, E, Sözen M, Rashkovetsky L, Matur F, Nevo E (2008). Discrimination of 2n = 60 Spalax leucodon cytotypes (Spalacidae, Rodentia) in Turkey by means of classical and molecular cytogenetic techniques. Cytogenet Genom Res 122: 139–149.
  • Kandemir İ, Sözen M, Matur F, Kankılıç T, Martínkova N, Çolak R, Özkurt SÖ, Çolak E (2012). Phylogeny of species and cytotypes of mole rats (Spalacidae) in Turkey inferred from mitochondrial cytochrome b gene sequences. Folia Zool 61: 25–
  • Kankılıç T, Çolak E, Kankılıç T (2009). Macro-anatomical and karyological features of two blind mole rat subspecies (Rodentia: Spalacidae) from Turkey. Anat Histol Embryol 38: 145–153.
  • Nevo E, Filipucci MG, Redi CD, Simson S, Heth G, Beiles A (1995). Karyotype and genetic evolution in speciation of subterranean mole rats of the genus Spalax in Turkey. Evol J Linn Soc 54: 203–229.
  • Nevo E, Ivanitskaya E, Beiles A (2001). Adaptive Radiation of Blind Subterranean Mole Rats: Naming and Revisiting the Four Sibling Species of the Spalax ehrenbergi Superspecies in Israel: S. galili (2n = 52), S. golani (2n = 54), S. carmeli (2n = 58), and S. judaei (2n = 60). Leiden, the Netherlands: Backhuys Publishers.
  • Ognev SI (1947). Mammals of the U.S.S.R. and Adjacent Countries. Vol. V. Rodents. Jerusalem: Israel Program for Scientific Translations (1963 English translation of original Russian).
  • Peakall R, Smouse PE (2006). GenAlEx 6: Genetic Analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6: 288–295.
  • Reyes A, Nevo E, Saccone C (2003). DNA sequence variation in the mitochondrial control region of subterranean mole rats, Spalax ehrenbergi superspecies, in Israel. Mol Biol Evol 20: 622–632. Rohlf FJ (2000). NTSYSpc, Numerical Taxonomy System for the PC. Exeter Software, Version 2.1. Setauket, NY, USA: Applied Biostatistics Inc.
  • Savic IR, Nevo E (1990). The Spalacidae: evolutionary history, speciation, and population biology. In: Nevo E, Reig OA, editors. Evolution of Subterranean Mammals at the Organismal and Molecular Levels. New York: Wiley-Liss, pp. 129–154.
  • Shinohara A, Campbell KL, Suzuki H (2003). Molecular phylogenetic relationships of moles, shrew moles and desmans from the New and Old Worlds. Mol Phylogenet Evol 26: 247–258.
  • Sözen M (2004). A karyological study on subterranean mole rats of the Spalax leucodon Nordmann, 1840 superspecies in Turkey. Mamm Biol 69: 420–429.
  • Sözen M, Çataklı K, Eroğlu F, Matur F, Sevindik M (2011). Distribution of chromosomal forms of Nannospalax nehringi (Satunin, 1898) (Rodentia: Spalacidae) in Çankırı and Çorum provinces, Turkey. Turk J Zool 35: 367–374.