Inferring phylogenetic relationships in the common vole (Microtus arvalis) based on mitochondrial and nuclear sequence diversities

Inferring phylogenetic relationships in the common vole (Microtus arvalis) based on mitochondrial and nuclear sequence diversities

The common vole Microtus arvalis (Pallas, 1778) is the most widespread Microtus species. It has two forms - the European arvalis form (2n: 46, NF: 84) and the Asian obscurus form (2n: 46, NF: 72). The present study aimed to clarify the taxonomic status of M. arvalis populations distributed in Eastern Turkey, Europe and Asia by analysing two mitochondrial (CYTB and COX1) and one nuclear (IRBP) markers. Phylogenetic dendrograms (median-joining networks and Bayesian trees) constructed using the mitochondrial markers clearly separated the Anatolian population from the European and Asian populations. Contrarily, any explicit differentiation was not shown in IRBP analyses. Mean and net genetic distance values (d) were found to be notably low for three markers. Species delimitation test (Automatic Barcode Gap Discovery Method) supported these results. Our results indicate that the arvalis and obscurus forms are not sufficiently differentiated to be considered different species, while the Anatolian population has only recently split from the Asian population. Together, these findings demonstrate that the speciation process is ongoing.

___

  • Akhverdian MR, Liapunova EA, Vorontsov NN, Teslenko SV (1999). Intrapopulation autosomal polymorphism in the common vole Microtus arvalis from the Transcaucasian region. Genetika 35 (12): 1687-1698.
  • Baker RJ, Bradley RD (2006). Speciation in mammals and the genetic species concept. Journal of Mammalogy 87 (4): 643-662. doi:10.1644/06-MAMM-F-038R2.1
  • Bandelt HJ, Forster P, Röhl A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16 (1): 37-48.
  • Barbosa S, Pauperio J, Searle JB, Alves PC (2013). Genetic identification of Iberian rodent species using both mitochondrial and nuclear loci: application to noninvasive sampling. Molecular Ecology Resources 13 (1): 43-56. doi: 10.1111/1755-0998.12024
  • Barbosa S, Paupério J, Pavlova SV, Alves PC, Searle JB (2018). The Microtus voles: Resolving the phylogeny of one of the most speciose mammalian genera using genomics. Molecular Phylogenetics and Evolution 125: 85-92. doi: 10.1016/j. ympev.2018.03.017
  • Borkowska A, Ratkiewicz M (2008). Sex-related spatial structure and effective population size in the common vole, Microtus arvalis, as revealed by mtDNA analysis. Annales Zoologici Fennici 45 (4): 255-262. doi: 10.5735/086.045.0403
  • Bradley RD, Baker RJ (2001). A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy 82 (4): 960-973. doi: 10.1644/1545-1542(2001)082<0960:ATO TGS>2.0.CO;2
  • Bulatova N, Golenishchev F, Bystrakova N, Pavlova S, Koval’skaya J et al. (2007). Distribution and geographic limits of the alternative cytotypes of two Microtus voles in European Russia. Hystrix, the Italian Journal of Mammalogy 18 (1): 99-109.
  • Bulatova NS, Golenishchev FN, Koval’skaya YM, Emelyanova LG, Bystrakova N et al. (2010). Cytogenetic study of the parapatric contact zone between two 46-chromosomal forms of the common vole in European Russia. Russian journal of genetics 46 (4): 443-448. doi: 10.1134/S1022795410040095
  • Bužan EV, Förster DW, Searle JB, Kryštufek B (2010). A new cytochrome b phylogroup of the common vole (Microtus arvalis) endemic to the Balkans and its implications for the evolutionary history of the species. Biological Journal of the Linnean Society 100 (4): 788-796.
  • Chaval Y, Dobigny G, Michaux J, Pages M, Corbisier C et al. (2010). A multi-approach survey as the most reliable tool to accurately assess biodiversity: an example of Thai murine rodents. Kasetsart Journal (Natural Sciences) 44: 590-603.
  • Chen JT, Qin J, Li K, Xu QY, Wang XP et al. (2019). Identification and characterization of a novel subtype of Tula virus in Microtus arvalis obscurus voles sampled from Xinjiang, China. Infection, Genetics and Evolution 75: 104012. doi: 10.1016/j.meegid.2019.104012
  • Conroy CJ, Cook JA (2000). Phylogeography of a post‐glacial colonizer: Microtus longicaudus (Rodentia: Muridae). Molecular Ecology 9 (2): 165-175. doi: 0.1046/j.1365- 294x.2000.00846.x
  • Çam P, Yiğit N, Çolak E (2015). Chromosomal arrangements based on fundamental number of chromosomal arms (FN) of hybrid individuals of Mesocricetus brandti. Marmara Fen Bilimleri Dergisi 27 (3): 93-96. doi: 10.7240/mufbed.01631
  • DeBry RW, Sagel RM (2001). Phylogeny of Rodentia (Mammalia) inferred from the nuclear-encoded gene IRBP. Molecular Phylogenetics and Evolution 19 (2): 290-301. doi: 10.1006/ mpev.2001.0945
  • Dianat M, Darvish J, Cornette R, Aliabadian M, Nicolas V (2017). Evolutionary history of the Persian Jird, Meriones persicus, based on genetics, species distributionmodelling and morphometric data. Journal of Zoological Systematics and Evolutionary Research 55: 29-45. doi: 10.1111/jzs.12145
  • Drummond AJ, Rambaut A (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. doi: 10.1186/1471-2148-7-214
  • Fink S, Excoffier L, Heckel, G (2004). Mitochondrial gene diversity in the common vole Microtus arvalis shaped by historical divergence and local adaptations. Molecular Ecology 13: 3501- 3514. doi: 10.1111/j.1365-294X.2004.02351.x
  • Galewski T, Tilak MK, Sanchez S, Chevret P, Paradis E et al. (2006). The evolutionary radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evolutionary Biology 6 (1): 80. doi: 10.1186/1471-2148-6-80
  • Golenishchev FN, Malikov VG (2006). The developmental conduit of the tribe Microtini (Rodentia, Arvicolinae): systematic and evolutionary aspects. Russian Journal of Theriology 5 (1): 17- 24.
  • Hasegawa M, Kishino H, Yano TA (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160-174. doi: 10.1007/BF02101694
  • Haynes S, Jaarola M, Searle JB (2003). Phylogeography of the Common Vole (Microtus arvalis) with Particular Emphasis on the Colonization of the Orkney Archipelago. Molecular Ecology 12: 951-956.
  • Heckel G, Burri R, Fink S, Desmet JF, Excoffier L (2005). Genetic structure and colonization processes in European populations of the common vole, Microtus arvalis. Evolution 59 (10): 2231- 2242.
  • Huchon D, Madsen O, Sibbald MJ, Ament K, Stanhope MJ et al. (2002). Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology and Evolution 19 (7): 1053- 1065. doi: 10.1093/oxfordjournals.molbev.a004164
  • Jaarola M, Searle JB (2002). Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Molecular Ecology 11: 2613-2621. doi: 10.1046/j.1365-294X.2002.01639.x
  • Jaarola M, Martinkova N, Gündüz İ, Brunhoff C, Zima J et al. (2004). Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 33: 647- 663. doi: 10.1016/j.ympev.2004.07.015
  • Jansa SA, Voss RS (2000). Phylogenetic studies on didelphid marsupials I. Introduction and preliminary results from nuclear IRBP gene sequences. Journal of Mammalian Evolution 7 (1): 43-77. doi: 10.1023/A:1009465716811
  • Jukes TH, Cantor CR (1969). Evolution of protein molecules. In: Munro HN (editor). Mammalian Protein Metabolism, Vol. 3. Cambridge, MA, USA: Academic Press, pp. 21-132.
  • Kefelioğlu H (1995). The taxonomy of the genus of Microtus (Mammalia: Rodentia) and its distribution in Turkey. Turkish Journal of Zoology 19 (1): 35-63.
  • Kohli BA, Speer KA, Kilpatrick CW, Batsaikhan N, Damdinbaza D, Cook JA (2014). Multilocus systematics and non-punctuated evolution of Holarctic Myodini (Rodentia: Arvicolinae). Molecular Phylogenetics and Evolution 76: 18-29. doi: 10.1016/j.ympev.2014.02.019
  • Kral B, Liapunova EA (1975). Karyotypes of 46-chromosome Microtus arvalis (Microtidae, Rodentia). Zoologicke Listy 24 (1): 1-11.
  • Kryštufek B, Vohralík V (2005). Mammals of Turkey and Cyprus, Vol. 2, Rodentia I: Sciuridae, Dipodidae, Gliridae, Arvicolinae. Koper, Slovenia: Annales Majora, p. 292.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35 (6): 1547-1549. doi: 10.1093/molbev/msy096
  • Lavrenchenko LA, Potapov SG, Bulatova NS, Golenishchev FN (2009). A genetic study of natural hybridization between two forms of the common vole (Microtus arvalis) with the use of molecular and cytogenetic methods. Doklady Biological Sciences 426 (1): 222. doi: 10.1134/S0012496609030090
  • Lemskaya N, Romanenko S, Golenishchev F, Rubtsova N, Sablina O et al. (2010). Chromosomal evolution of Arvicolinae Rodentia). III. Karyotype relationships of ten Microtus species. Chromosome Research 18: 459-471. doi: 10.1007/s10577-010- 9124-0
  • Mahmoudi A, Darvish J, Aliabadian M, Moghaddam FY, Kryštufek B (2017). New insight into the cradle of the grey voles (subgenus Microtus) inferred from mitochondrial cytochrome b sequences. Mammalia 81 (6): 583-593. doi: 10.1515/ mammalia-2016-0001
  • Malygin VM. (1974). A comparative morphometric analysis of karyotipes in two geographical forms of 46-chromosome common vole, Microtus arvalis. Zoologicheskii Zhurnal 53: 769-778.
  • Malygin VM, Orlov VN (1974). Areas of four species of common voles (superspecies Microtus arvalis) according to karyological data. Zoologicheskii Zhurnal 53 (4): 616-622.
  • Malygin VM, Panteleichuk TMSL (2003). Efficiency of reproductive isolation mechanisms in six species of common voles (Microtus, Rodentia) Problems of Evolution 5: 198-206.
  • Markov G, Yiğit N, Çolak E, Kocheva M (2009). A refined method for craniometrical identification of the sibling vole species Microtus arvalis and Microtus rossiaemeridionalis in Europe and the Asiatic part of Turkey. North-Western Journal of Zoology 5 (1): 1-7.
  • Markov G, Yiğit N, Çolak E, Kocheva M, Gospodinova M (2014). Epigenetic diversity and similarity of the voles of “Guentheri” Group (Mammalia: Rodentia) in Anatolian Peninsula and South-Eastern Part of the Balkan Peninsula. Acta Zoologica Bulgarica 66: 159-164.
  • Martínková N, Barnett R, Cucchi T, Struchen R, Pascal M et al. (2013). Divergent evolutionary processes associated with colonization of offshore islands. Molecular Ecology 22 (20): 5205-5220. doi: 10.1111/mec.1246
  • Mazurok NA, Rubtsova NV, Isaenko AA, Pavlova ME, Slobodyanyuk SY et al. (2001). Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicolidae). Chromosome Research 9: 107- 120.
  • Meyer MN, Golenishchev FN, Bulatova N (1999). Peculiarities of geographic distribution of two karyomorphs of Microtus arvalis Pallas, 1779 (Rodentia, Arvicolinae) in European Russia. ZIN Annual Reports of the Zoological Institute RAS.
  • Michaux J, Bellinvia E, Lymberakis P (2005). Taxonomy, evolutionary history and biogeography of the broad-toothed field mouse (Apodemus mystacinus) in the eastern Mediterranean area based on mitochondrial and nuclear genes. Biological Journal of the Linnean Society 85 (1): 53-63. doi: 10.1111/j.1095- 8312.2005.00469.x
  • Mitchell-Jones AJ, Amori G, Bogdanowicz W, Krystufek B, Reijnders PJH et al. (1999). The Atlas of European Mammals, Vol. 3. London, UK: Academic Press.
  • Musser GG, Carleton MD (2005). Family Muridae. In: Wilson DE, Reeder DM (editors). Mammal Species of the World: A Taxonomic and Geographic Reference. 2nd ed. Washington, DC, USA: Smithsonian Institution Press, pp. 501-755.
  • Nicolas V, Schaeffer B, Missoup AD, Kennis J, Colyn M et al. (2012). Assessment of three mitochondrial genes (16S, Cytb, CO1) for identifying species in the Praomyini tribe (Rodentia: Muridae). PLoS One 7 (5). doi: 10.1371/journal.pone.0036586
  • Ochman H, Wilson AC (1987). Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. Journal of Molecular Evolution 26 (1-2): 74-86. doi: 10.1007/BF02111283
  • Orlov VN, Malygin VM (1969). Two forms of 46 chromosome Microtus arvalis Pallas. In: Vorontsov NN (editor). The Mammals: Evolution, Karyology, Systematics, Faunistics). Novosibirsk Russia: Academy Science of the USSR, pp. 143- 144.
  • Pages M, Chevret P, Gros-Balthazard M, Hughes S, Alcover JA et al. (2012). Paleogenetic analyses reveal unsuspected phylogenetic affinities between mice and the extinct Malpaisomys insularis, an endemic rodent of the Canaries. PLoS One 7: e31123. doi: 10.1371/journal.pone.0031123
  • Posada D (2008). jModelTest 0.1 package. Vigo, Spain: University of Vigo (Department of Biochemistry, Genetics and Immunology).
  • Puillandre N, Lambert A, Brouillet S, Achaz G (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21 (8): 1864-1877. doi: 10.1111/j.1365-294X.2011.05239.x
  • Robins JH, Hingston M, MatisooSmith E, Ross HA (2007). Identifying Rattus species using mitochondrial DNA. Molecular Ecology Notes 7: 717-729. doi: 10.1111/men.2007.7.issue-5
  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P et al. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34 (12): 3299-3302. doi: 10.1093/molbev/msx248
  • Salichos L, Rokas A (2013). Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497 (7449): 327-331. doi: 10.1038/nature12130
  • Sawyer YE (2014). Living on the edge: a comparative phylogeographic study of refugial and insular fragmentation. PhD, University of New Mexico, New Mexico, USA.
  • Shenbrot GI and Krasnov BR (2005). An Atlas of the Geographic Distribution of the Arvicoline Rodents of the World (Rodentia, Muridae: Arvicolinae). Sofia, Bulgaria: Pensoft Publishers.
  • Springer MS, Amrine HM, Burk A, Stanhope MJ (1999). Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Systematic Biology 48 (1): 65-75. doi: 10.1080/106351599260445
  • Springer MS, Burk A, Kavanagh JR, Waddell VG, Stanhope MJ (1997). The interphotoreceptor retinoid binding protein gene in therian mammals: implications for higher level relationships and evidence for loss of function in the marsupial mole. Proceedings of the National Academy of Sciences 94 (25): 13754-13759. doi: 10.1073/pnas.94.25.13754
  • Stanhope MJ, Czelusniak J, Si JS, Nickerson J, Goodman M (1992). A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Molecular Phylogenetics and Evolution 1 (2): 148-160. doi: 10.1016/1055- 7903(92)90026-D
  • Stanhope MJ, Smith MR, Waddell VG, Porter CA, Shivji MS et al. (1996). Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: convincing evidence for several superordinal clades. Journal of Molecular Evolution 43 (2): 83-92. doi: 10.1007/BF02337352
  • Stojak J, McDevitt AD, Herman JS, Searle JB, Wójcik JM (2015). Postglacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common vole Microtus arvalis. Biological Journal of the Linnean Society 115 (4): 927-939.
  • Steppan SJ, Schenk JJ (2017). Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS One 12 (8): e0183070. doi: 0.1371/journal.pone.0183070
  • Tougard C, Montuire S, Volobouev V, Markova E, Contet J et al. (2013). Exploring phylogeography and species limits in the Altai vole (Rodentia: Cricetidae). Biological Journal of the Linnean Society 108 (2): 434-452. doi: 10.1111/j.1095- 8312.2012.02034.x
  • Tryfonopoulos G, Thanou E, Chondropoulos B, Fraguedakıs‐Tsolıs S (2008). mtDNA analysis reveals the ongoing speciation on Greek populations of Microtus (Terricola) thomasi (Arvicolidae, Rodentia). Biological Journal of the Linnean Society 95: 117- 130. doi: 10.1111/j.1095-8312.2008.01025.x
  • Voss RS, Jansa SA (2003). Phylogenetic studies on didelphid marsupials II. Nonmolecular data and new IRBP sequences: separate and combined analyses of didelphine relationships with denser taxon sampling. Bulletin of the American Museum of Natural History 1-82. doi: 10.1206/0003-0090(2003)276<0001:PSOD MI>2.0.CO;2
  • Yiğit N, Çolak E, Sozen M, Ozkurt S, Verimli R (2000). The distribution, morphology, and karyology of the genus Mesocricetus (Mammalia: Rodentia) in Turkey. Folia Zoologica 49 (3): 167-174.
  • Yiğit N, Çolak E, Sözen M, Karataş A (2006). Rodents of Türkiye: Türkiye Kemiricileri. In: Demirsoy A (editor). Ankara, Turkey: Meteksan Company.
  • Yigit N, Hutterer R, Kryštufek B, Amor G (2016). Microtus arvalis. The IUCN Red List of Threatened Species 2016: e.T13488A22351133. doi: 10.2305/IUCN.UK.2016-2.RLTS. T13488A22351133.en.
  • Yiğit N, Çetintürk D, Çolak E (2017). Phylogenetic assessment of voles of the Guentheri Group (Mammalia: Microtus) in Turkish Thrace and Western Anatolia. The European Zoological Journal 84 (1): 252-260. doi: 10.1080/24750263.2017.1317041
  • Yorulmaz T, Zima J, Arslan A, Kankiliç T (2013). Variations in C-heterochromatin and AgNOR distribution in the common vole (Microtus arvalis sensu lato) (Mammalia: Rodentia). Archives of Biological Sciences 65 (3): 989-995. doi: 10.2298/ABS1303989Y
  • Zima J (1999). Microtus rossiaemeridionalis. In: Mitchell-Jones AJ, Amori G, Bogdanowicz W, Kryštufek B, Reijnders PJH et al. (editors). The Atlas of European Mammals. London, UK: Academic Press.