Habitat structure and host plant specialization drive taxonomic andfunctional composition of Heteroptera in postfire successional habitats

Habitat structure and host plant specialization drive taxonomic andfunctional composition of Heteroptera in postfire successional habitats

Changes in habitat structure are the main driving forces for responses of animal assemblages to fire. According to thedisturbance theory, generalist species are expected to outperform specialists in variable environments. Thus, we hypothesized thatomnivorous and polyphagous species will become more abundant in unstable postfire successional vegetation, whereas monophagous(specialists), due to their strong dependence on host plants, are expected to respond according to the responses of plant hosts. Wecompared the responses of true bug (Heteroptera) assemblages in stable (unburnt) versus unstable (postfire successional) environmentsas this group shows a high diversity of feeding strategies. Redundancy analysis fitted our hypothesis as omnivorous and polyphagousbugs responded positively to fire whereas oligophagous bugs did not. Thus, the most generalized bugs in terms of diet were found indisturbed (burnt) habitats whereas specialized bugs were found in undisturbed (unburnt) habitats. Moreover, the most specialized bugs(monophagous species) responded to fire in accordance to the responses of their specific host plants. Although based on small bipartitenetworks, the lower modularity in burnt sites corresponded to a scenario of lower segregation of plant resources and fits the higherpresence of generalist bugs in these sites. Our results suggest that plant–bug trophic interactions shape the response of Heteroptera tofire, and this response seems to be mediated by the degree of feeding specialization.

___

  • Anderson MJ (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecol 26: 32-46.
  • Arnan X, Cerdá X, Rodrigo A, Retana J (2013). Response of ant functional composition to fire. Ecography 36: 1182-1192.
  • Bascompte J, Jordano P (2006). The structure of plant–animal mutualistic networks. In: Pascual M, Dunne JA, editors. Food Webs as Complex Adaptive Networks: Linking Structure to Dynamics. Oxford, UK: Oxford University Press, pp. 143-159.
  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003). The nested assembly of plant-animal mutualistic networks. P Natl Acad Sci USA 100: 9383-9387.
  • Bergman E (1988). Foraging abilities and niche breadths of two percids, Perca fluviatilis and Gymnocephalus cernua, under different environmental conditions. J Anim Ecol 57: 443-453.
  • Bond WJ, Woodward FI, Midgley GF (2005). The global distribution of ecosystems in a world without fire. New Phytol 165: 525-538.
  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826-1832.
  • Borcard D, Legendre P, Drapeau P (1992). Partialling out the spatial component of ecological variation. Ecology 73: 1045-1055.
  • Briani DC, Palma ART, Vieira EM, Henriques RPB (2004). Post-fire succession of small mammals in the Cerrado of central Brazil. Biodiv Conserv 13: 1023-1037.
  • Bröring U, Wiegleb G (2005). Soil zoology II: Colonization, distribution, and abundance of terrestrial Heteroptera in open landscapes of former brown coal mining areas. Ecol Eng 24:135-147.
  • Bros V, Moreno-Rueda G, Santos X (2011). Does postfire management affect the recovery of Mediterranean communities? The case study of terrestrial gastropods. For Ecol Manag 261: 611-619.
  • Brotons L, Herrando S, Pons, P (2008). Wildfires and the expansion of threatened farmland birds: the ortolan bunting Emberiza hortulana in Mediterranean landscapes. J Appl Ecol 45: 1059- 1066.
  • Carver M, Gross GF, Woodward, TT (1991). Hemiptera. In: Naumann ID, Carne PB, Lawrence JF, Nielsen ES, Spradbery JP, Taylor RW, Whitten MJ, Littlejohn MJ, editors. The Insects of Australia. 2nd ed. Carlton, Australia: Melbourne University Press, pp 429-509.
  • Chergui B, Fahd S, Santos X, Pausas JG (2017). Socioeconomic factors drive fire-regime variability in the Mediterranean Basin. Ecosystems (in press).
  • Clarke KR (1993). Non-parametric multivariate analysis of changes in community structure. Austr J Ecol 18: 117-143.
  • Deák B, Valkó O, Török P, Végvári Z, Hartel T, Schmotzer A, Kapocsi I, Tóthmérész B (2014). Grassland fires in Hungary? A problem or a potential alternative management tool? Appl Ecol Env Res 12: 267-283.
  • Dormann CF, Gruber B, Fründ J (2008). Introducing the bipartite package: analysing ecological networks. R News 8: 8-11.
  • Driscoll DA, Henderson MK (2008). How many common reptile species are fire specialists? A replicated natural experiment highlights the predictive weakness of a fire succession model. Biol Conserv 141: 460-471.
  • Fontaine JB, Donato DC, Robinson WD, Law BE, Kauffman JB (2009). Bird communities following high-severity fire: Response to single and repeat fires in a mixed-evergreen forest, Oregon, USA. For Ecol Manag 257: 1496-1504.
  • Fox BJ (1982). Fire and mammalian secondary succession in an Australian coastal heath. Ecology 63: 1332-1341.
  • Frank T, Künzle U (2006). Effect of early succession in wildflower areas on bug assemblages (Insecta: Heteroptera). Eur J Entomol 103: 61-70.
  • Futuyma DJ, Moreno G (1988). The evolution of ecological specialization. Ann Rev Ecol Syst 19: 207-233.
  • Girvan M, Newman MEJ (2002). Community structure in social and biological networks. P Natl Acad Sci USA 99: 7821-7826.
  • Goula M (1986). Contribución al estudio de los Hemípteros (Insecta, Heteroptera, Familia Miridae). PhD, Universitat de Barcelona, Barcelona, Spain (in Spanish).
  • Henry TJ (2009). Biodiversity of Heteroptera. In: Foottit RG, Adler PH, editors. Insect Biodiversity: Science and Society. Oxford, UK: Blackwell Publishing, pp. 223-263.
  • Izhaki I (2012). The impact of fire on vertebrates in the Mediterranean Basin: an overview. Israel J Ecol Evol 58: 221-233.
  • Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012). Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge, UK: Cambridge University Press.
  • Kelly LT, Brotons L, (2017). Using fire to promote biodiversity. Science 355: 1264-1265.
  • Legendre P, Gallagher ED (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271-280.
  • Letnic M, Dickman CR, Tischler MK, Tamayo B, Beh CL (2004). The responses of small mammals and lizards to post-fire succession and rainfall in arid Australia. J Arid Environ 59: 85-114.
  • Levins R (1968). Evolution in Changing Environments. Princeton, NY, USA: Princeton University Press.
  • Lindenmayer DB, Noss RF (2006). Salvage logging, ecosystem processes, and biodiversity conservation. Conserv Biol 20: 949-958.
  • Lindenmayer DB, Wood JT, MacGregor C, Michael DR, Cunningham RB, Crane M, Montague-Drake R, Brown D, Muntz R, Driscoll DA (2008). How predictable are reptile responses to wildfire? Oikos 117: 1086-1097.
  • Mateos E, Santos X, Pujade-Villar J (2011). Taxonomic and functional responses to fire and post-fire management of a Mediterranean Hymenoptera community. Environ Manag 48: 1000-1012.
  • Moretti M, de Bello F, Roberts SPM, Potts SG (2009). Taxonomical vs functional responses of bee communities to fire in two contrasting climatic regions. J Anim Ecol 78: 98-108.
  • Moretti M, Duelli P, Obrist MK (2006). Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149: 312-327.
  • Moretti M, Legg C (2009). Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32: 299-309.
  • Moriondo M, Good P, Durao R, Bindi M, Gianakopoulos C, CorteReal J (2006). Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31: 85-95.
  • Ne’eman G, Dafni A, Potss SG (2000). The effect of fire on flower visitation rate and fruit set in four core-species in east Mediterranean scrubland. Plant Ecology 146: 87-104.
  • Novotny V, Miller SE, Baje L, Balagawi S, Basset Y, Cizek L, Craft KJ, Dem F, Drew RAI, Hulcr J et al. (2010). Guild-specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J Anim Ecol 79: 1193-1203.
  • Parr CL, Robertson HG, Biggs HC, Chown SL (2004). Response of African savanna ants to long-term fire regimes. J Appl Ecol 41: 630-642.
  • Paula S, Arianoutsou M, Kazanis D, Tavsanoglu Ç, Lloret F, Buhk C, Ojeda F, Luna B, Moreno JM, Rodrigo A, et al. (2009). Firerelated traits for plant species of the Mediterranean Basin. Ecology 90: 1420.
  • Paula S, Pausas JG (2008). Burning seeds: germinative response to heat treatments in relation to resprouting ability. J Ecol 96: 543- 552.
  • Pausas JG, Parr CL (2018). Towards an understanding of the evolutionary role of fire in animals. Evol Ecol (in press).
  • Peralta G, Stevani EL, Chacoff, NP, Dorado J, Vázquez DP (2017). Fire influences the structure of plant-bee networks. J Anim Ecol (in press).
  • Péricart J (1984). Hémiptères Berytidae euro-méditerranéens. Faune de France. France et regions limitrophes, 70. Paris, France: Féderation française des Sociétés de Sciences Naturelles (in French).
  • Piazzon M, Larrinaga AR, Santamaría L (2011). Are nested networks more robust to disturbance? A test using epiphyte-tree, comensalistic networks. PLoS One 6: e19637.
  • Rego F, Pereira J, Trabaud L (1993). Modelling community dynamics of a Quercus coccifera L. garrigue in relation to fire using Markov chains. Ecol Model 66: 251-260.
  • Ribes E (2004). Els Heteròpters del Parc de Collserola: Faunística, bioecología i gestió. PhD, Universitat de Barcelona, Barcelona, Spain (in Catalan).
  • Ribes E, Ribes J (2000). Noves dades d’Hemípters per a Catalunya i Territoris limítrofs (Heteroptera). Ses Entom ICHN-SCL 10: 5-29 (in Catalan).
  • Richmond CE, Breitburg DL, Rose KA (2005). The role of environmental generalist species in ecosystem function. Ecol Model 188: 279-295.
  • Santos X, Badiane A, Matos C (2016). Contrasts in short- and longterm responses of Mediterranean reptile species to fire and habitat structure. Oecologia 180: 205-2016.
  • Santos X, Bros V, Miño A (2009). Recolonization of a burnt Mediterranean area by terrestrial gastropods. Biodiv Conserv 18: 3153-3165.
  • Santos X, Cheylan M (2013). Taxonomic and functional response of a Mediterranean reptile assemblage to a repeated fire regime. Biol Conserv 168: 90-98.
  • Santos X, Mateos E, Bros V, Brotons V, de Mas E, Herraiz JA, Herrando S, Miño A, Olmo-Vidal JM, Quesada J et al. (2014). Is response to fire influenced by dietary specialization and mobility? A comparative study with multiple animal assemblages. PLoS One 9: e88224.
  • Santos X, Poquet JM (2010). Ecological succession and habitat attributes affect the post-fire response of a Mediterranean reptile community. Eu J Wildl Res 56: 895-905.
  • Schuh RT, Slater JA (1995). True Bugs of the World (Hemiptera, Heteroptera): Classification and Natural History. Ithaca, NY, USA: Cornell University Press.
  • Smith AL (2018). Successional changes in trophic interactions support a mechanistic model of post-fire population dynamics. Oecologia 186: 129-139.
  • Swan M, Christie F, Sitters H, York A, Di Stef J (2015). Predicting faunal fire responses in heterogeneous landscapes: the role of habitat structure. Ecol Appl 25: 2293-2305.
  • Thompson JN (2005). The Geographic Mosaic of Coevolution. Chicago, IL, USA: University of Chicago Press.
  • Torma A, Bozsó M, Tölgyesi C, Gallé R (2017). Relationship of different feeding groups of true bugs (Hemiptera: Heteroptera) with habitat and landscape features in Pannonic salt grasslands. J Insect Conserv 21: 645-656.
  • Torma A, Császár P (2013). Species richness and composition patterns across trophic levels of true bugs (Heteroptera) in the agricultural landscape of the lower reach of the Tisza River Basin. J Insect Conserv 17: 35-51.
  • Torma A, Gallé R, Bozsó M (2014). Effects of habitat and landscape characteristics on the arthropod assemblages (Araneae, Orthoptera, Heteroptera) of sand grassland remnants in Southern Hungary. Agr Ecosyst Environ 196: 42-50.
  • Valkó O, Kelemen A, Miglécz T, Török P, Deák B, Tóth K, Tóth JP, Tóthmérész B (2018). Litter removal does not compensate detrimental fire effects on biodiversity in regularly burned semi-natural grasslands. Sci Total Environ 622-623: 783-789.
  • Valentine LE, Reaveley A, Johnson B, Fisher R, Wilson BA (2012). Burning in Banksia Woodlands: how does the fire-free period influence reptile communities? PLoS One 7: e34448.
  • Villa-Galaviz E, Boege K, del-Val E (2012). Resilience in plantherbivore networks during secondary succession. PLoS One 7: e53009.
  • Warren SD, Scifres CJ, Teel PD (1987). Response of grassland arthropods to burning: a review. Agr Ecosyst Environ 19: 105-130.
  • Zurbrügg C, Frank T (2006). Factors influencing bug diversity (Insecta: Heteroptera) in semi-natural habitats. Biodiv Conserv 15: 275-294.