A nonparametric approach in quantifying species richness of Lumbricidae in East Serbia, Balkan Peninsula

A nonparametric approach in quantifying species richness of Lumbricidae in East Serbia, Balkan Peninsula

The concept of species richness is currently the most basic and most often used parameter in quantitative assessments ofbiodiversity. The species richness of Lumbricidae was investigated in East Serbia, one of the highly complex areas in the eastern andcentral part of the Balkan Peninsula. Our database included 2615 individuals from a total of 54 species. Quantification of speciesrichness was done by using the observed number of species and richness estimators. A nonparametric approach was used to evaluatethe performance of various estimation techniques: Chao 2, Jackknife 2, and Bootstrap. However, only Chao 2 reached the asymptote,maintaining values of 77 until the end of the curve. A total of 70.12% of the estimated number of Lumbricidae living in East Serbia weredetected in our field study and we should expect that 23 lumbricid taxa will be added to the inventory in the future. The sampling effortneeded to find additional species undetected during the sampling is 214 individuals. Chao 2 generally outperforms other estimatorssince it attains near-asymptotic stability and, therefore, more accurate prediction of earthworm species richness.

___

  • Blakemore R (2008). Cosmopolitan Earthworms: An Eco-taxonomic Guide to the Species. Yokohama, Turkey: Verm Ecology.
  • Brose U (2002). Estimating species richness of pitfall catches by non- parametric estimators. Pedobiologia 46: 101-107.
  • Cardoso P, Gaspar C, Pereira LC, Silva I, Henriques SS, Silva RR, Sousa P (2008). Assessing spider species richness and composition in Mediterranean cork oak forests. Acta Oecol 33: 114-127.
  • Chao A (1987). Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43: 783-791.
  • Chao A, Colwell R, Chih-Wei L, Gotelli N (2009). Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90: 1125-1133.
  • Chazdon RL, Colwell RK, Denslow JS, Guariguata MR (1998). Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: Dallmeier F, Comiskey JA, editors. Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies. Paris, France: Parthenon Publishing, pp. 285-309.
  • Coddington JA, Young LH, Coyle FA (1996). Estimating spider species richness in a southern Appalachian cove hardwood forest. J Arachnol 24: 111-128.
  • Cognetti L (1906). Nuovi dati sui Lumbricidi dell’Europa orientale. Boll Mus Zool Comp Anat 21: 1-18 (in Italian).
  • Colwell RK (2006). EstimateS: statistical estimation of species richness and shared species from samples. Storrs, CT, USA: Department of Ecology & Evolutionary Biology, University of Connecticut.
  • Colwell RK, Coddington JA (1994). Estimating terrestrial biodiversity through extrapolation. Phil Trans B 345: 101-118.
  • Csuzdi CS, Zicsi A (2003). Earthworms of Hungary. Pedozoologica Hungarica No. 1. Budapest, Hungary: Natural History Museum and Hungarian Academy of Sciences.
  • Dey A, Chaudhuri PS (2013). Quantifying earthworm species richness in the pineapple and mixed fruit plantations of West Tripura, India-A non-parametric approach. Eur J Soil Biol 59: 31-35.
  • Džukić G, Kalezić ML (2004). The biodiversity of amphibians and reptiles in the Balkan Peninsula. In: Griffiths HI, Kryštufek B, Reed JM, editors. Balkan Biodiversity: Pattern and Process in the European Hotspot. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 167-192.
  • Gaston KJ (1996). Species richness: measure and measurement. In: Gaston KJ, editor. Biodiversity: A Biology of Numbers and Difference. Oxford, UK: Blackwell Science, pp. 77-113.
  • Gaston KJ (2000). Global patterns in biodiversity. Nature 405: 220- 227.
  • Gotelli J, Colwell RK (2010). Estimating species richness. In: Magurran AE, McGill BJ, editors. Biological Diversity: Frontiers in Measurement and Assessment. Oxford, UK: University Press, pp. 39-54.
  • Griffiths HI, Krystufek B, Ree M (2004). Balkan Biodiversity, Patterns and Processes in the European Hotspot. London, UK: Kluwer.
  • Hackenberger DK, Hackenberger BK (2013). Checklist of the earthworm fauna of Croatia (Oligochaeta: Lumbricidae). Zootaxa 3710: 1-30.
  • Hackenberger DK, Hackenberger BK (2014). Earthworm community structure in grassland habitats differentiated by climate type during two consecutive seasons. Eur J Soil Biol 61: 27-34.
  • Horvat I, Glavač V, Ellenberg H (1974). Vegetation Sudosteuropas . Stuttgart, Germany: Gustav Fisher Verlag (in German).
  • Jakšić P (2008). Prime Butterfly Areas: A Tool for Nature Conservation in Serbia. Belgrade, Serbia: Habiprot.
  • Jakšić P, Radović I, Mijović A, Stavretović N (2011). The development of the system of nature protection in Serbia and its implementation on the example of Butterflies (Lepidoptera: Hesperioidea and Papilionoidea). Ins Nat Cons 23: 1-71.
  • Lopatin IK, Matvejev S (1995). Kratka zoogeografija bioma Balkanskog poluostrva. Ljubljana, Slovenia: Univerzitetski Udžbenik (in Slovenian).
  • Makarov SE, Ćurčić BM, Tomić VT, Legakis A (2004). The Diplopods of Serbia, Montenegro and the Republic of Macedonia. Belgrade, Serbia: SANU.
  • Milutinović T, Avramović S, Pešić S, Blesić B, Stojanović M, Mitrovski-Bogdanović A (2010). Contribution to the knowledge of pedofauna in Šumadija (central part of Serbia). Biotechnol Biotechnol Equip 24: 628-635.
  • Milutinović T, Milanović J, Stojanović M (2015). Application of species richness estimators for the assessment of earthworm diversity. J Nat Hist 49: 273-283.
  • Mršić N (1991). Monograph on Earthworms (Lumbricidae) of the Balkans I-II. Ljubljana, Slovenia: SAZU.
  • Palmer MW (1991). Estimating species richness: the second-order jackknife reconsidered. Ecology 72: 1512-1513.
  • Papp B, Erzberger P (2007). Contributions to the bryophyte flora of Western Stara Planina Mts (E Serbia). Studia Bot Hung 38: 95- 123.
  • Pešić S (1997). Interactions with the environment and dynamics of weevils (Coleoptera, Curculionidae) in Kragujevac’s basin. PhD, Kragujevac University, Kragujevac, Serbia.
  • Rosa D (1897). Nuovi lombrichi dell’Europa orientale (Seconda serie). Boll Mus Zool Comp Anat 12: 1-5 (in Italian).
  • Savić I (2008). Diversification of the Balkan fauna: its origin, historical development and present status. In: Makarov SE, Dimitrijević RN, editors. Advances in Arachnology and Developmental Biology. Belgrade, Serbia: SASA Publishing, pp. 57-79.
  • Smith EP, van Belle G (1984). Nonparametric estimation of species richness. Biometrics 40: 119-129.
  • Stojanović M, Karaman S (2003). Second contribution to the knowledge of earthworms (Lumbricidae) in Montenegro. Arch Biol Sci 55: 55-58.
  • Stojanović M, Karaman S (2006). Threat status and distribution of the earthworm genus Helodrilus Hoffmeister, 1845; sensu Zicsi 1985, on the Balkans and the neighboring regions. Biodivers Conserv 15: 4601-4617.
  • Stojanović M, Karaman S (2007). Distribution of endemic species from the earthworm genus Serbiona (Oligochaeta, Lumbricidae) in Serbia. Arch Biol Sci 59: 23-24.
  • Stojanović M, Milutinović T (2013). Checklist of earthworms (Oligochaeta: Lumbricidae) from Montenegro: diversity and biogeographical review. Zootaxa 3710: 147-164.
  • Stojanović M, Milutinović T, Karaman S (2008). Earthworm (Lumbricidae) diversity in the Central Balkans: an evaluation of their conservation status. Eur J Soil Biol 44: 54-67.
  • Stojanović M, Tsekova R, Milutinović T (2012). Earthworms (Oligochaeta: Lumbricidae) of Bulgaria: diversity and biogeographical review. Acta Zool Bulgar 4: 7-15.
  • Stojanović M, Tsekova R, Pešić S, Milanović J, Milutinović T (2013). Diversity and a biogeographical review of the earthworms (Oligochaeta: Lumbricidae) of the Balkan Mountains (Stara Planina Mountains) in Serbia and Bulgaria. Turk J Zool 37: 635-642.
  • Szederjesi T (2013). New earthworm records from the former Yugoslav countries (Oligochaeta, Lumbricidae). Opusc Zool Budapest 44: 61-76.
  • Szederjesi T (2014). Allolobophora ruzsai sp. n., a new earthworm species and new records from Montenegro (Oligochaeta: Lumbricidae). North-West J Zool 1: 48-52.
  • Szederjesi T, Csuzdi CS (2012a). New earthworm species and records from Albania (Oligochaeta, Lumbricidae). Acta. Zool Acad Sci Hung 58: 259-274.
  • Szederjesi T, Csuzdi CS (2012b). New and little known earthworm species from Greece (Oligochaeta: Lumbricidae, Acanthodrilidae). Zootaxa 3304: 25-42.
  • Tischler W (1949). Grundzüge der terrestrischen Tierökologie. Braunschweig, Germany: Fridrich Vieweg (in German).
  • Unterseher M, Schnittler C, Dorman C, Sickert A (2008). Application of species richness estimators for the assessment of fungal diversity. FEMS Microbiol Lett 282: 205-213.
  • Valchovski HI (2014). Diversity of earthworms (Oligochaeta: Lumbricidae) in Sofia Plain, Bulgaria. ZooNotes 59: 1-9.
  • Whittaker RJ, Willis KJ, Field R (2001). Scale and species richness: towards a general, hierarchical theory of species richness. J Biogeogr 28: 453-470.