Spatial distribution of the epigeic species of earthworms Dendrobaena octaedra and D. attemsi (Oligochaeta: Lumbricidae) in the forest belt of the northwestern Caucasus

Evaluation of the spatial distribution of 2 ecologically similar, but different, in terms of their spatial ranges, earthworm species, D. octaedra and D. attemsi, in the belt forests of northwestern Caucasus were based on our own natural data and using geographic information system (GIS) modeling of modern potential distributions. The quantitative records of earthworms were collected in beech, deciduous, dark coniferous, coniferous-deciduous, and pine forests (1028 geographic locations). Of the most important microsites inhabited by the epigeic earthworms, 2 (plant litter and deadwood) were examined. It was demonstrated that there was high correlation of the 2 species with the humidity of the habitat and the presence of deadwood at different stages of decomposition, especially for D. attemsi, which lives mainly in deadwood in all of the forest types. The high correlation of these species to coniferous-deciduous forests and dark coniferous forests was demonstrated on both the basis of the field data analysis and the GIS modeling results.

___

  • Addison JA (2009). Distribution and impacts of invasive earthworms in Canadian forest ecosystems. Biological Invasions 11 (1): 59- 79.
  • Berman DI, Meshcheryakova EN, Alfimov AV, Leirikh, AN (2001). Spread of the earthworm Dendrobaena octaedra (Lumbricidae: Oligochaeta) from Europe to Northern Asia is restricted by its insufficient frost resistance. Doklady Biological Sciences 377 (1-6): 145-148.
  • Bouche MB (1977). Strategies lombriciennes. Ecological Bulletins 25: 122-132.
  • Castin-Buchet V, Andre P (1998). The influence of intensive thinning on earthworm populations in the litters of Norway spruce and Douglas fir. Pedobiologia 42 (1): 63.
  • Cesarz S, Fahrenholz N, Migge-Kleian S, Platner C, Schaefer M (2007). Earthworm communities in relation to tree diversity in a deciduous forest. European Journal of Soil Biology 43: 61-67. doi: 10.1016/j.ejsobi.2007.08.003
  • Crawford PH, Hoagland BW (2010). Using species distribution models to guide conservation at the state level: the endangered American burying beetle (Nicrophorus americanus) in Oklahoma. Journal of Insect Conservation 14 (5): 511-521.
  • Cunha L, Brown GG, Stanton DW, da Silva E, Hansel FA, Jorge G, James SW (2016). Soil animals and pedogenesis: the role of earthworms in anthropogenic soils. Soil Science 181 (3/4): 110-125.
  • Eisenhauer N (2010). The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53: 343-352. doi: 10.1016/j.pedobi.2010.04.003
  • Eisenhauer N, Partsch S, Parkinson D, Scheu S (2007). Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biology and Biochemistry 39: 1099-1110. doi: 10.1016/j.soilbio.2006.12.019
  • Fawcett T (2006). An introduction to ROC analysis. Pattern Recognition Letters 27: 861-874. doi: 10.1016/j. patrec.2005.10.010
  • Fender WM (1982). Dendrobaena attemsi in an American greenhouse, with notes on its morphology and systematic position. Megadrilogica 4: 8-11.
  • Fender WM (1985). Earthworms of the western United States. Part 1 Lumbricidae. Megadrilogica 4: 93-129.
  • Ferlian O, Eisenhauer N, Aguirrebengoa M, Camara M, Ramirez‐ Rojas I, Santos F., Thakur MP (2018). Invasive earthworms erode soil biodiversity: A meta‐analysis. Journal of Animal Ecology 87 (1): 162-172. doi: 10.1111/1365-2656.12746
  • Geraskina AP (2016a). Problems of quantification and accounting faunal diversity of earthworms in forest communities. Russian Journal of Ecosystem Ecology 1 (2): 1-9 (in Russian with an abstract in English). doi: 10.21685/2500-0578-2016-2-4
  • Geraskina AP (2016b). Earthworms (Oligochaeta, Lumbricidae) near the township Dombay of Teberda Reserve (Northwest Caucasus, Karachay-Cherkessia). Proceedings of the Zoological Institute of Russian Academy of Sciences 320 (4): 450-466 (in Russian with an abstract in English).
  • Geraskina AP (2018). Dinamics of the complex of earthworms during of successions after-felling in the forests оf the NorthWestern Caucasus. Forest science issues 1 (1): 1-14 (in Russian with an abstract in English). doi: 10.31509/2658-607x-2018-1- 1-1-14
  • Geraskina AP, Shevchenko NE (2018) Biotopic association of earthworms in intact forests of Teberda Nature Reserv. Russian Forest Science 6: 464-478 (in Russian with an abstract in English). doi: 10.1134 / S0024114818060037
  • Goncharov AA, Hramova EYu, Alejnikov AA (2015). Rol’ mikromozaichnoj organizacii lesnyh ekosistem v formirovanii struktury pochvennoj mezofauny na primere pihto-el’nika vysokotravnogo v verhov’yah reki Pechora. Proceedings of Pechoro-Ilychskiy Reserve 17: 62-68 (in Russian).
  • Gulisashvili VZ, Mahadze LB, Prilipko LI (1975). Rastitel’nost’ Kavkaza. Moscow, Russia: Nauka, pp. 1-233 (in Russian).
  • Henshue N, Mordhorst C, Perkins L (2018). Invasive earthworms in a Northern Great Plains prairie fragment. Biological Invasions 20 (1): 29-32.
  • Hughes FM., Cortes-Figueira JE, Drumond MA (2018). Anticipating the response of the Brazilian giant earthworm (Rhinodrilus alatus) to climate change: implications for its traditional use. Anais da Academia Brasileira de Ciencias 91 (1). doi: 10.1590/0001-3765201820180308
  • Kvavadze ESh (1985). Dozhdevye chervi (Lumbricidae) Kavkaza. Tbilisi, Georgia: Metsniereba, рр. 1-238 (in Russian).
  • Latif R, Malek M, Csuzdi C (2017). When morphology and DNA are discordant: Integrated taxonomic studies on the Eisenia fetida/andrei complex from different parts of Iran (Annelida, Clitellata: Megadrili). European Journal of Soil Biology 81: 55- 63. doi: 10.1016/j.ejsobi.2017.06.007
  • Lavelle P (1983). The structure of earthworm communities. In: Satchell JE (editor). Earthworm Ecology. Dordrecht, Netherlands: Springer, pp. 449-466. doi: 10.1007/978-94-009- 5965-1_39
  • Lavelle P (1988). Earthworm activities and the soil system. Biology and Fertility of Soils 6 (3): 237-251.
  • Lee KE (1995). Earthworms and sustainable land use. In: Hendrix P (editor). Earthworm Ecology and Biogeography in North America. Boca Raton, USA: Lewis Publishers, pp. 215-234.
  • Marchan DF, Refoyo P, Fernandez R, Novo M, de Sosa I, Cosin DJD (2016). Macroecological inferences on soil fauna through comparative niche modeling: the case of Hormogastridae (Annelida, Oligochaeta). European Journal of Soil Biology 75: 115-122. doi: 10.1016/j.ejsobi.2016.05.003
  • Marchan DF, Refoyo P, Novo M, Fernandez R, Trigo D, Cosin DJD (2015). Predicting soil micro-variables and the distribution of an endogeic earthworm species through a model based on large-scale variables. Soil Biology and Biochemistry 81: 124- 127. doi: 10.1016/j.soilbio.2014.10.023
  • Marek PE, Shear WA, Bond JE (2012). A redescription of the leggiest animal, the millipede Illacme plenipes, with notes on its natural history and biogeography (Diplopoda, Siphonophorida, Siphonorhinidae). ZooKeys 241: 77. doi: 10.3897/zookeys.241.3831
  • Marshall VG, Fender WM (2007). Native and introduced earthworms (oligochaeta) of British Columbia, Canada. Megadrilogica 11 (4): 29-52.
  • Martinsson S, Cui Y, Martin PJ, Pinder A, Quinlan K, Wetzel MJ, Ersеus C. (2015). DNA-barcoding of invasive European earthworms (Clitellata: Lumbricidae) in south-western Australia. Biological Invasions17 (9): 2527-2532.
  • McLean MA, Migge-Kleian S, Parkinson D (2006). Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biological Invasions 8 (6): 1257-1273. doi: 10.1007/ s10530-006-9020-x
  • Meshcheryakova EN, Berman DI (2014). Cold hardiness and geographic distribution of earthworms (Oligochaeta, Lumbricidae, Moniligastridae). Entomological Review 94 (4): 486-497.
  • Omodeo P, Rota E (1989). Earthworms of Turkey. Italian Journal of Zoology 56 (2): 167-198.
  • Perel TS (1977). Differences in lumbricid organization connected with ecological properties. Ecological Bulletins 25: 56-63.
  • Perel TS (1979). Range and Regularities in the Distribution of Earthworms of the USSR Fauna. Moscow, Russia: Nauka, pp. 1-272 (in Russian with an abstract in English).
  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259. doi: 10.1016/j.ecolmodel.2005.03.026
  • Phillips SJ, Dudik M, (2008). Modeling of species distributions with MAXENT: new extensions and a comprehensive evaluation. Ecography 31: 161-175. doi: 10.1111/j.0906-7590.2008.5203.x
  • Rapoport IB (2014). Fauna, community structure and distribution of mountain-belt earthworms (Oligochaeta, Lumbricidae) the central part of the Kuban variant belts (North-Western Caucasus, the Republic of Adygea). Bulletin of Adyghe State University 147 (4): 77-84 (in Russian with an abstract in English).
  • Rapoport IB, Tsepkova NL (2015). Population structure and topical preferendumy earthworms (Oligochaeta, Lumbricidae) in soils of forest formations river basins of the Teberda and the Big Zelenchuk (Teberda Reserve, North-Western Caucasus). News of the Samara Scientific Center of the Russian Academy of Sciences 17 (6): 33-39 (in Russian with an abstract in English).
  • Rasmussen L, Holmstrup M. (2002). Geographic variation of freezetolerance in the earthworm Dendrobaena octaedra. Journal of Comparative Physiology B 172 (8): 691-698. doi: 10.1007/ s00360-002-0298-4
  • Rota E, Erseus C. (1997). First record of Dendrobaena attemsi (Michaelsen) (Oligochaeta, Lumbricidae) in Scandinavia, with a critical review of its morphological variation, taxonomic relationships and geographical range. Annales Zoologici Fennici. 34: 89-104.
  • Sariyildiz T (2008). Effects of tree canopy on litter decomposition rates of Abies nordmanniana, Picea orientalis and Pinus sylvestris. Scandinavian Journal of Forest Research 23 (4): 330- 338 doi: 10.1080/02827580802275816
  • Sariyildiz T, Küçük M (2008) Litter mass loss rates in deciduous and coniferous trees in Artvin, northeast Turkey: Relationships with litter quality, microclimate, and soil characteristic. Turkish journal of Agriculture and Forestry 32 (6): 547-559.
  • Sayad E, Hosseini SM, Hosseini V, Salehe-Shooshtari MH (2012) Soil macrofauna in relation to soil and leaf litter properties in tree plantations. Journal of Forest Science 58 (4): 170-180. doi: 10.17221/58/2011-JFS
  • Scheldeman X, Zonneveld M (2010) Training manual on spatial analysis of plant diversity and distribution. Rome, Italy: Bioversity International, pp. 1-179.
  • Shekhovtsov SV, Golovanova EV, Peltek SE (2014). Invasive lumbricid earthworms of Kamchatka (Oligochaeta). Zoological Studies 53 (1): 52.
  • Shirokov AI, Spirin VA, Shestakova AA, Pohodyaeva ME (2001). Features of humification of the deadwood and dynamics of the ground cover in the fir-fir trees of the Nizhny Novgorod TransVolga region. Bulletin of the Nizhny Novgorod University 1: 18-24 (in Russian with an abstract in English).
  • Smith J, Potts S, Eggleton P (2008). Evaluating the efficiency of sampling methods in assessing soil macrofauna communities in arable systems. European Journal of Soil Biology 44 (3): 271- 276. doi: 10.1016/j.ejsobi.2008.02.002
  • Spirin VA, Shirokov AI (2002). Features of the dynamics of the destruction of a deadwood in undisturbed south taiga phytocenoses. Mycology and Phytopathology 37 (1): 22-23 (in Russian with an abstract in English).
  • Tiunov AV, Dobrovolśkaya TG, Polyanskaya LM (1997). Earthworm burrow walls. Microbiology 6 (3): 349-353.
  • Tiunov AV, Kuznetsova NA (2000). Environmental activity of anecic earthworms (Lumbricus terrestris L.) and spatial organization of soil communities. Biology Bulletin 27 (5): 510-518.
  • Vsevolodova-Perel TS (1997). Dozhdevye chervi fauny Rossii: kadastr i opredelitel’. Moscow, Russia: Nauka, pp. 1-101 (in Russian).
  • Wackett AA, Yoo K, Olofsson J, Klaminder J (2018). Humanmediated introduction of geoengineering earthworms in the Fennoscandian arctic. Biological Invasions 20 (6): 1377-1386. doi: 10.1007/s10530-017-1642-7
  • Zheng Y, Wang S, Bonkowski M, Chen X, Griffiths B et al. (2018). Litter chemistry influences earthworm effects on soil carbon loss and microbial carbon acquisition. Soil Biology and Biochemistry 123: 105-114. doi: 10.1016/j.soilbio.2018.05.012
  • Zhukov AV (2004) Earthworms as a component of biogeocenosis and their role in zooindication. Gruntoznavstvo 5 (1-2): 44-57 (in Russian with an abstract in English).
Turkish Journal of Zoology-Cover
  • ISSN: 1300-0179
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK