Polymorphism of the STAT5A and MYF-5 genes in Anatolian water buffalo

The aim of this study was to determine the genetic variation of MYF-5 and STAT5A genes in Anatolian water buffalo which was the only buffalo breed reared in Turkey by using the PCR-RFLP method. In this study, 120 Anatolian water buffalo were examined. After PCR amplification for MYF-5 gene, 512 bp PCR products were digested with TaqI enzyme. Although no AA genotype was found, the frequency of GG and AG genotypes were 0.77 and 0.33. PCR products of 215 bp for STAT5A gene were digested with AvaI enzyme and showed that all of the Anatolian water buffalo examined had monomorphic in terms of CC genotype. Anatolian water buffalo were found in Hardy-Weinberg equilibrium with respect to MYF-5-TaqI polymorphism.

___

  • 1. Sariözkan S. Türkiye’de Manda Yetiştiriciliği’nin Önemi. Kafkas Universitesi Veteriner Fakültesi Dergisi 2011; 17 (1) (in Turkish with an abstract in English).
  • 2. Selvaggi M, Dario C, Normanno G, Celano GV, Dario M. Genetic polymorphism of STAT5A protein: relationships with production traits and milk composition in Italian brown cattle. Journal of Dairy Research 2009; 76: 441-445. doi: 10.1017/ S0022029909990070
  • 3. Shin SC, Chung ER. Association of SNP marker in the leptin gene with carcass and meat quality traits in Korean cattle. AsianAustralasian Journal of Animal Sciences 2007; 20 (1): 1. doi: 10.5713/ajas.2007.1
  • 4. Li C, Basarab J, Snelling WM, Benkel B, Murdoch B et al. Assessment of positional candidate genes MYF-5 and IGF1 for growth on bovine chromosome 5 in commercial of Bos taurus. Journal of Animal Sciences 2004; 82: 1-7. doi: 10.2527/2004.8211
  • 5. Antoniou E, Hirst BJ, Grosz M et al. A single strand conformational polymorphism in the bovine gene STAT5A. Animal Genetics 1999, 30: 232-232.
  • 6. Robakowska-Hyżorek D, Oprządek J, Żelazowska B, Olbromski R, Zwierzchowski L. Effect of the G–723G→ T polymorphism in the bovine Myogenic Factor 5 (MYF-5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of polish Holstein-Friesian cattle. Biochemical Genetics 2010; 48 (5-6): 450-464. doi: 10.1007/s10528-009- 9328-1
  • 7. Arnold HH and Braun T. Myogenic control genes in vertebrates. Advances in Developmental Biology 1993; 111-158.
  • 8. Beauchamp JR, Heslop L, David SW, Tajbakhsh S, Kelly RG et al. Expression of CD34 and MYF-5 defines the majority of quiescent adult skeletal muscle satellite cells. The Journal of Cell Biology 2000; 151 (6); 1221-1234. doi: 10.1083/jcb.151.6.1221
  • 9. Braun T, Arnold HH. Inactivation of MYF‐6 and MYF‐5 genes in mice leads to alterations in skeletal muscle development. The EMBO Journal 1995; 14 (6); 1176-1186. doi: 10.1002/j.1460- 2075.1995.tb07101.x
  • 10. Wyszyńska-Koko J, Pıerzchala M, Flısıkowskı K, Kamyczek M, Różyckı M et al. Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs. Journal of Applied Genetics 2006; 47 (2): p.131-138.
  • 11. Li C, Basarab J, Snelling WM, Benkel B, Murdoch B et al.The identification of common haplotypes on bovine chromosome 5 within commercial lines of Bos taurus and their associations with growth traits. Journal of Animal Sciences 2002; 80 (5): 1187-1194. doi: 10.2527/2002.8051187x
  • 12. Maak S, Neumann K, Swalve HH. Identification and analysis of putative regulatory sequences for the MYF-5/MYF6 locus in different vertebrate species. Gene 2006; 379: 141-147. doi: 10.1016/j.gene.2006.05.007
  • 13. Verner J, Humpolicek P, Knoll A. Impact of MYOD family genes on pork traits in Large White and Landrace pigs. Journal of Animal Breeding and Genetics 2007; 124 (2): 81-85. doi: 10.1111/j.1439-0388.2007.00639.x
  • 14. Chung ER, Kim WT. Association of SNP marker in IGF-I and MYF-5 candidate genes with growth traits in Korean cattle. Asian-Australasian Journal of Animal Sciences 2005; 18 (8): 1061. doi: 10.5713/ajas.2005.1061
  • 15. Zhang RF, Chen H, Lei CZ, Zhang CL, Lan XY et al. Association between polymorphisms of MSTN and MYF-5 genes and growth traits in three Chinese cattle breeds. AsianAustralasian Journal of Animal Sciences 2007; 20 (12): 1798. doi: 10.5713/ajas.2007.1798
  • 16. Bhuiyan MSA, Kim NK, Cho YM, Yoon D, Kim KS et al. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livestock Science 2009; 126 (1): 292-297. doi: 10.1016/j.livsci.2009.05.019
  • 17. Ujan JA, Zan LS, Ujan SA, Wang HB. Association between polymorphism of MYF-5 gene with meat quality traits in indigenous Chinese cattle breeds. In: International Conference on Asia Agriculture and Animal; 2011. pp. 50-55.
  • 18. Dario C, Selvaggi M. Study on the STAT5A/AvaI polymorphism in Jersey cows and association with milk production traits. Molecular Biology Reports 2011; 38 (8): 5387-5392. doi: 10.1007/s11033-011-0691-8
  • 19. Oikonomou G, Michailidis G, Kougioumtzis A, Avdi M, Banos G. Effect of polymorphisms at the STAT5A and FGF2 gene loci on reproduction, milk yield and lameness of Holstein cows. Research in Veterinary Science 2011; 91 (2): 235-239. doi: 10.1016/j.rvsc.2011.01.009
  • 20. Wakao H, Gouilleux F, Groner B. Mammary Gland Factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO Journal 1994; 13 (9): 2182-2191. doi: 10.1002/ j.1460-2075.1994.tb06495.x
  • 21. Teglund S, McKay C, Schuetz E, Van Deursen JM, Stravopodis D et al. STAT5A and STAT5B proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell, 1998; 93 (5): 841-50. doi: 10.1016/S0092-8674(00)81444-0
  • 22. Darnell JE. STATs and gene regulation. Science 1997; 277: 1630-1635. doi: 10.1126/science.277.5332.1630
  • 23. Brym P, Kaminski S, Rusc A. New SSCP polymorphism within bovine STAT5A gene and its associations with milk performance traits in Black-and-White and Jersey cattle. Journal of Applied Genetics 2004; 45 (4): 445-452.
  • 24. Khatib H, Monson RL, Schutzkus V, Kohl DM, Rosa GJ et al. Mutations in the STAT5A gene are associated with embryonic survival and milk composition in cattle. Journal of Dairy Science 2008; 91 (2): 784-793. doi: 10.3168/jds.2007-0669
  • 25. Flisikowski K, Oprzdek J, Dymnicki E, Zwierzchowski L. New polymorphism in bovine STAT5A gene and its association with meat production traits in beef cattle. Animal Science Papers and Reports 2003; 21 (3): 147-157.
  • 26. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. A Laboratory Mannual. 2nd ed. NY, USA: Cold Spring Harbor Laboratory Press; 1989.
  • 27. Oege. mrcalc Software. Oege; 2017.
  • 28. Akçay A, Akyüz B, Bayram D. Determination of the AluI polymorphism effect of bovine Growth Hormone gene on carcass traits in Zavot cattle with analysis of covariance. Turkish Journal of Veterinary and Animal Sciences 2015; 39 (1): 16-22. doi: 10.3906/vet-1404-29
  • 29. Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics 2009; 10 (6): 381-391. doi: 10.1038/ nrg2575
  • 30. Şahin C, Akyüz B. Detection of MYF5 gene polymorphism with PCR-RFLP method in five cattle breeds breeding in Turkey. Mediterranean Agricultural Sciences 2017; 30 (1): 35- 38 (in Turkish with an abstract in English).
  • 31. Ujan JJ, Zan LS, Wang HB, Ujan SA. The effect of Myogenic Factor 5 polymorphism on the meat quality in Chinese Bos taurus. Agriculturae Conspectus Scientificus Vol 2011b; 76 (4): 373-377.
  • 32. Kišacová J, Kúbek A, Meluš V, Čanakyová Z, Řehout V. Genetic polymorphism of MYF-5 and Myostatin in Charolais breed. Journal of Agrobiology 2009; 26 (1): 7-11.
  • 33. Çınar MU, Akyüz B, Kıyıcı JM, Arslan K, Kaliber M et al. Effects of GH-AluI and MYF-5-TaqI polymorphisms on weaning weight and body measurements in Holstein young bulls. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2018; 24 (6): 873-880. doi: 10.9775/kvfd.2018.20193
  • 34. TÜİK. Yaş Grubuna Göre Manda Sayısı. Ankara, Turkey: TÜİK; 2018 (in Turkish).
  • 35. Iannuzzi L, King WA, Di Berardino D. Chromosome evolution in domestic bovids as revealed by chromosome banding and FISH-mapping techniques. Cytogenetic and Genome Research 2009; 126 (1-2): 49-62. doi: 10.1159/000245906
  • 36. Borquis RRA, Baldi F, de Camargo GMF, Cardoso DF, Santos DJA et al. Water buffalo genome characterization by the Illumina BovineHD BeadChip. Genetics and Molecular Research 2014; 4202-4215. doi: 10.4238/2014.June.9.6
  • 37. Coşier V, Vlaic A, Constantinescu R, Gulea A, Pop IA et al. Research concerning the PCR-RFLP/Eco88I polymorphism of STAT5A gene in Romanian simmental cattle. Animal Science and Biotechnologies 2010; 67 (1-2): 374-380.
  • 38. Oprządek J, Flisikowski K. Polymorphisms at loci of Leptin (LEP), Pit1 and STAT5A and their association with growth, feed conversion. Animal Science Papers and Reports 2003; 21 (3): 135-145.
  • 39. Arslan K, Akyüz B, Agaoglu OK. Investigation of STAT5A, FSHR, and LHR gene polymorphisms in Turkish indigenous cattle breeds (East Anatolian Red, South Anatolian Red, Turkish Grey, Anatolian Black, and Zavot). Russian Journal of Genetics 2015; 51 (11): 1088-1095. doi: 10.1134/S1022795415110022
  • 40. Schennink A, Bovenhuis H, Léon‐Kloosterziel KM, Van Arendonk JA, Visker MH. Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk‐fat composition. Animal Genetics 2009; 40 (6): 909-916. doi: 10.1111/j.1365-2052.2009.01940.x
  • 41. Coizet B, Frattini S, Nicoloso L, Iannuzzi L, Coletta A et al. Polymorphism of the STAT5A, MTNR1A and TNFα genes and their effect on dairy production in Bubalus bubalis. Italian Journal of Animal Science 2018; 17 (1): 31-37. doi: 10.1080/1828051X.2017.1335181