Functional and whole regression-based genome-wide association analyses for weight measurements of chicken eggs

In genomic studies, complex traits can be modelled using repeated measures, thereby gaining a better understanding of the underlying biology. An increased number of measurements per individual might reduce measurement noise, thus increasing the likelihood of detecting true genomic signals. Here we aimed to predict genomic signals over a logistic curve referring to multiple underlying genetic architectures, for both simulated and longitudinal egg weight datasets. The chicken data were obtained from 92 sires and 801 dams of an 11th generation pure line, resulting in data from 1078 hens. We analysed longitudinal measurements of egg weights with 294,705 single nucleotide polymorphisms (SNPs). We found that a single regression-based functional genome-wide association study (fGWAS) could be useful for manipulating dynamic egg weight over the entire laying period based on a moderate to major effect gene. The fGWAS SNPs associated with the egg weight were located on chromosome 1 close to the gene DLEU7, which has a role in regulating ovary weight in chickens. The SNPs were detected based on the absolute effect sizes using whole regression Bayesian models. This approach is likely to be useful for predicting polygenic risk scores and/or genomic breeding values during the genomic selection/ gene editing for longitudinal egg weight measurements.

___

  • 1. Das K, Li J, Wang Z, Tong C, Fu G et al. A dynamic model for genome-wide association studies. Human Genetics 2011; 129 (6): 629-639. doi: 10.1007/s00439-011-0960-6
  • 2. Sikorska K, Lesaffre E, Groenen PJF, Rivadeneira F, Eilers PHC. Genome-wide analysis of largescale longitudinal outcomes using penalization GALLOP algorithm. Nature Scientific Reports 2018; 8: 6815. doi: 10.1038/s41598-018-24578-7
  • 3. Wu RL, Lin M. Functional mapping how to study the genetic architecture of dynamic complex traits. Nature Reviews Genetics 2006; 7: 229-237. doi: 10.1038/nrg1804
  • 4. Karacaören B. A Bayesian random walk approach for mapping dynamic quantitative trait. Journal of Applied Nonlinear Dynamics 2016; 5 (1): 105-115. doi: 10.5890/ JAND.2016.03.008
  • 5. Furlotte NA, Eskin E, Eyheramendy S. Genome-wide association mapping with longitudinal data. Genet Epidemiology 2012; 36: 463-471. doi: 10.1002/gepi.21640
  • 6. Wang Z, Xu K, Zhang X, Wu X, Wang Z. Longitudinal SNPset association analysis of quantitative phenotypes. Genetic Epidemiology 2017; 41 (1): 81-93. doi: 10.1002/gepi.22016
  • 7. Wu Z, Hu Y, Melton PE. Longitudinal data analysis for genetic studies in the whole-genome sequencing era. Genetic Epidemiology 2014; 38 (S1): S74-S80. doi: 10.1002/gepi.21829
  • 8. Rönnegård L, McFarlane SE, Husby A, Kawakami, Ellegren H et al. Increasing the power of genome wide association studies in natural populations using repeated measures –evaluation and implementation. Methods in Ecology Evolution 2016; 7 (7): 792-799. doi: 10.1111/2041-210X.12535
  • 9. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA et al. Finding the missing heritability of complex diseases. Nature 2009; 461 (7265): 747-753. doi: 10.1038/nature08494
  • 10. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome wide dense marker maps. Genetics 2001; 157: 1819-1829.
  • 11. Campos G, Gianola D, Allison DB. Predicting genetic predisposition in human: the promise of whole-genome markers. Nature Reviews Genetics 2010; 11: 880-886. doi: 10.1038/nrg2898
  • 12. Andersson L, Georges M. Domestic-animal genomics: deciphering the genetics of complex traits. Nature Reviews Genetics 2004; 5: 202-212. doi: 10.1038/nrg1294
  • 13. Sikorska K, Montazeri NM, Uitterlinden A, Rivadeneira F, Eilers PH et al. GWAS with longitudinal phenotypes: performance of approximate procedures. European Journal of Human Genetics 2015; 23 (10): 1384. doi: 10.1038/ejhg.2015
  • 14. Liu Z, Sun C, Yan Y, Li G, Wu G et al. Genome-wide association analysis of age-dependent egg weights in chickens. Frontiers in Genetics 2018; 9: 128. doi: 10.3389/fgene.2018.00128
  • 15. Coster A, Bastiaansen JW, Calus MP, Maliepaard C, Bink MC. QTLMAS 2009: simulated dataset. BMC Proceedings 2010; 4 (Suppl. 1): S3. doi: 10.1186/1753-6561-4-S1-S3
  • 16. West GB, Brown JH, Enquist BJ. A general model for ontogenetic growth. Nature 2001; 413: 628-631.
  • 17. Ma CX, Casella G, Wu R. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 2002; 161 (4): 1751-1762.
  • 18. Aulchenko YS, Ripke S, Isaacs A, Van Duijn CM. GenABEL: an R library for genome wide association analysis. Bioinformatics 2006; 23 (10): 1294-1296. doi: 10.1093/bioinformatics/btm108
  • 19. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 2006; 38 (8): 904-909. doi: 10.1038 / ng1847
  • 20. Legarra A, Ricardi A, Filangi O. GS3: Genomic Selection, Gibbs Sampling, Gauss Seidel (and BayesCp). Paris, France: INRA; 2011.
  • 21. Legarra A, Robert-Granié C, Manfredi E, Elsen JM. Performance of genomic selection in mice. Genetics 2008; 180: 611-618. doi: 10.1534/genetics.108.088575
  • 22. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2018.
  • 23. Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T et al. BLUPF90 and related programs (BGF90). In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production; Montpellier, France; 2002.
  • 24. Honkatukia M, Tuiskula-Haavisto M, de Koning DJ, Virta A, Maki-Tanila A et al. A region on chicken chromosome 2 affects both egg white thinning and egg weight. Genetics Selection Evolution 2005; 37: 563-577. doi: 10.1186/1297-9686-37-6-563
  • 25. Tuiskula-Haavisto M, Honkatukia M, Vilkki J, de Koning DJ, Schulman NF et al. Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poultry Science 2002; 81: 919-927. doi: 10.1093/ps/81.7.919
  • 26. Wolc A, Arango J, Settar P, Fulton JE, O’Sullivan NP et al. Genome-wide association analysis and genetic architecture of egg weight and egg uniformity in layer chickens. Animal Genetics 2012; 43: 87-96. doi: 10.1111/j.1365- 2052.2012.02381.x
  • 27. Schreiweis MA, Hester PY, Settar P, Moody DE. Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2 resource population of chickens. Animal Genetics 2006; 37 (2): 106-112. doi: 10.1111 / j.1365-2052.2005.01394.x
  • 28. Sasaki O, Odawara S, Takahashi H, Nirasawa K, Oyamada Y et al. Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Animal Genetics 2004; 35 (3): 188-194. doi: 10.1111/j.1365-2052.2004.01133.x
  • 29. Yi G, Liu W, Li J, Jiangxia Z, Qu L et al. Genetic analysis for dynamic changes of egg weight in 2 chicken lines. Poultry Science 2014; 93: 2963-2969. doi: 10.3382 / ps.2014-04178
  • 30. Heuven HCM, Janss LLG. Bayesian multi-QTL mapping for growth curve parameters. BMC Proceedings 2010; 4 (Suppl. 1): S12-10. doi: 1186/1753-6561-4-s1-s12
  • 31. Veerkamp RF, Verbyla K, Mulder HA, Calus MPL. Simultaneous QTL detection and genomic breeding value estimation using high density SNP chips. BMC Proceedings 2010; 4 (Suppl. 1): S9-10. doi: 1186/1753-6561-4-s1-s9
  • 32. Veerkamp RF, Mulder HA, Thompson R, Calus MPL. Genomic and pedigree-based genetic parameters for scarcely recorded traits when some animals are genotyped. Journal of Dairy Science 2011; 94 (8): 4189-4197. doi: 10,3168 / jds.2011-4223
  • 33. Sun C, Lu J, Yi G, Yuan J, Duan Z et al. Promising loci and genes for yolk and ovary weight in chickens revealed by a genome-wide association study. PLoS One 2015; 10: e0137145. doi: 10.1371/journal.pone.0137145