Evaluation of the effects of bone morphogenetic protein-2 on the healing of bone calvarial defects in ovariectomized rats

Bone morphogenetic proteins BMPs are often used with bone grafts for bone regeneration. The aim of this study was to evaluate the effect of demineralized freeze-dried bone allografts and externally applied rhBMP-2 on bone healing in experimentally generated defects in the calvarium of ovariectomized and nonovariectomized rats via histological and immunohistochemical assays. The current study was carried out on 42 female Wistar rats. After ovariectomy was performed in half of the rats, the rats were divided into three groups: control, allograft, and allograft + BMP. An experimental defect with a diameter of 4 mm was created unilaterally in the parietal bone using a trephine dental drill and a physiodispenser with saline. All animals were euthanized at the end of week 8, and bone tissues were analyzed histologically and immunohistochemically. The allografts produced better results in terms of calvarial defect healing in both the ovariectomized and nonovariectomized groups compared to the control group in enhancing bone healing, whereas BMPs combined with allografts had no positive effect on new bone formation. The allografts and BMPs applied in both groups produced fibrous tissues rather than new bone tissue. Further comprehensive studies on the effectiveness of BMPs in the formation of new bone tissue should be conducted in animals with estrogen deficiency.

___

  • 1. Cypher TJ, Grossman JP. Biological principles of bone graft healing. The Journal of Foot and Ankle Surgery 1996; 35 (5): 413-417. doi: 10.1016/s1067-2516(96)80061-5
  • 2. Pereira RS, Menezes JD, Bonardi JP, Griza GL, Okamoto R et al. Comparative study of volumetric changes and trabecular microarchitecture in human maxillary sinus bone augmentation with bioactive glass and autogenous bone graft: a prospective and randomized assessment. International Journal of Oral Maxillofacial Surgery 2018; 47 (5): 665-671. doi: 10.1016/j.ijom.2017.11.016
  • 3. Agarwal A, Gupta ND, Jain A. Platelet rich fibrin combined with decalcified freeze-dried bone allograft for the treatment of human intrabony periodontal defects: a randomized split mouth clinical trial. Acta Odontologica Scandinavica 2016; 74 (1): 36-43. doi: 10.3109/00016357.2015.1035672
  • 4. Campana V, Milano G, Pagano E, Barba M, Cicione C et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of Materials Science: Materials in Medicine 2014; 25 (10): 2445-2461. doi: 10.1007/s10856-014- 5240-2
  • 5. Sharmin F, McDermott C, Lieberman J, Sanjay A, Khan Y. Dual growth factor delivery from biofunctionalized allografts: sequential VEGF and BMP-2 release to stimulate allograft remodeling. J Orthopaedic Research 2017; 35 (5): 1086-1095. doi: 10.1002/jor.23287
  • 6. Monea A, Beresescu G, Boeriu S, Tibor M, Popsor S et al. Erratum to: Bone healing after low-level laser application in extraction sockets grafted with allograft material and covered with a resorbable collagen dressing: a pilot histological evaluation. BMC Oral Health 2016; 16: 16. doi: 10.1186/ s12903-016-0173-4
  • 7. Özkan E, Bereket MC, Şenel E, Önger ME. Effect of electrohydraulic extracorporeal shockwave therapy on the repair of bone defects grafted with particulate allografts. Journal of Craniofacial Surgery 2019; 30 (4): 1298-1302. doi: 10.1097/SCS.0000000000005213
  • 8. Jovanovic SA, Hunt DR, Bernard GW, Spiekermann H, Nishimura R et al. Long-term functional loading of dental implants in rhBMP-2 induced bone. A histologic study in the canine ridge augmentation model. Clinical Oral Implants Research 2003; 14 (6): 793-803. doi: 10.1046/j.0905-7161.2003. clr140617.x
  • 9. Sorensen RG, Wikesjö UME, Kinoshita A, Wozney JM. Periodontal repair in dogs: evaluation of a bioresorbable calcium phosphate cement (Ceredex) as a carrier for rhBMP-2. Journal of Clinical Periodontology 2004; 31 (9): 796-804. doi: 10.1111/j.1600-051X.2004.00544.x
  • 10. Kang W, Liang Q, Du L, Shang L, Wang T et al. Sequential application of bFGF and BMP-2 facilitates osteogenic differentiation of human periodontal ligament stem cells. Journal of Periodontal Research 2019; 54 (4): 424-434. doi: 10.1111/jre.12644
  • 11. Lee AR, Choi H, Kim JH, Cho SW, Park YB. Effect of serial use of bone morphogenetic protein 2 and fibroblast growth factor 2 on periodontal tissue regeneration. Implant Dentistry 2017; 26 (5): 664-673. doi: 10.1097/ID.0000000000000624
  • 12. Kim HC, Song JM, Kim CJ, Yoon SY, Kim IR et al. Combined effect of bisphosphonate and recombinant human bone morphogenetic protein 2 on bone healing of rat calvarial defects. Maxillofacial and Plastic Reconstructive Surgery 2015; 37 (1): 16. doi: 10.1186/s40902-015-0015-3
  • 13. Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clinical Orthopaedics and Related Research 1998; 346: 26-37.
  • 14. Cho YJ, Yeo SI, Park JW, Shin HI, Bae YC et al. The effects of synthetic peptide derived from hBMP-2 on bone formation in rabbit calvarial defect. Tissue Engineering and Regenerative Medicine 2008: 5 (3): 488-497.
  • 15. Mathavan N, Bosemark P, Isaksson H, Tägil M. Investigating the synergistic efficacy of BMP-7 and zoledronate on bone allografts using an open rat osteotomy model. Bone 2013: 56 (2): 440-448. doi: 10.1016/j.bone.2013.06.030
  • 16. Hankenson KD, Zimmerman G, Marcucio R. Biological perspectives of delayed fracture healing. Injury 2014; 45 (2): 8-15. doi: 10.1016/j.injury.2014.04.003
  • 17. Chen XD, Deng M, Zhou JS, Xiao YZ, Zhou XS et al. Bone Morphogenetic Protein-2 regulates in vitro osteogenic differentiation of mouse adipose derived stem cells. European Review for Medical and Pharmacological Sciences 2015; 19 (11): 2048-2053.
  • 18. Gonzaga MG, Dos Santos Kotake BG, de Figueiredo FAT, Feldman S, Ervolino E et al. Effectiveness of rhBMP-2 association to autogenous, allogeneic, and heterologous bone grafts. Microscopy Research and Technique 2019; 82 (6): 689- 695. doi: 10.1002/jemt.23215
  • 19. Yan Q, Sage EH. Transforming growth factor-beta1 induces apoptotic cell death in cultured retinal endothelial cells but not pericytes: association with decreased expression of p21waf1/ cip1. Journal of Cellular Biochemistry 1998; 70 (1): 70-83.
  • 20. Alford AI, Hankenson KD. Matricellular proteins: extracellular modulators of bone development, remodeling, and regeneration. Bone 2006; 38 (6): 749-757. doi: 10.1016/j.bone.2005.11.017
  • 21. Ciceri P, Elli F, Cappelletti L, Tosi D, Savi F et al. Osteonectin (SPARC) expression in vascular calcification: in vitro and ex vivo studies. Calcified Tissue International 2016; 99 (5): 472- 480. doi: 10.1007/s00223-016-0167-x
  • 22. Ziolkowska A, Rucinski M, Pucher A, Tortorella C, Nussdorfer GG et al. Expression of osteoblast marker genes in rat calvarial osteoblast-like cells, and effects of the endocrine disrupters diphenylolpropane, benzophenone-3, resveratrol and silymarin. Chemico-Biological Interactions 2006; 164 (3): 147-156. doi: 10.1016/j.cbi.2006.09.009
  • 23. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. The American Journal of Medicine 1993; 94 (6): 646-650. doi: 10.1016/0002-9343(93)90218-e
  • 24. Penoni DC, Torres SR, Farias ML, Fernandes TM, Luiz RR et al. Association of osteoporosis and bone medication with the periodontal condition in elderly women. Osteoporosis International 2016; 27 (5): 1887-1896. doi: 10.1007/s00198- 015-3437-y
  • 25. Pountos I, Georgouli T, Henshaw K, Bird H, Jones E et al. The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone. Journal of Orthopaedic Trauma 2010; 24 (9): 552-556. doi: 10.1097/BOT.0b013e3181efa8fe
  • 26. Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. The Journal of Clinical Investigation 2006; 116 (5): 1186-1194. doi: 10.1172/JCI28550
  • 27. Gao Y, Qian WP, Dark K, Toraldo G, Lin AS et al. Estrogen prevents bone loss through transforming growth factor beta signaling in T cells. Proceedings of the National Academy of Sciences of the United States of America 2004; 101 (47): 16618- 16623. doi: 10.1073/pnas.0404888101
  • 28. Pires-Oliveira DAA, Oliveira RF, Amadei SU, Pacheco-Soares C, Rocha EF. Laser 904 nm action on bone repair in rats with osteoporosis. Osteoporosis International 2010; 21 (12): 2109- 2114. doi: 10.1007/s00198-010-1183-8
  • 29. Akita S, Fukui M, Nakagawa H, Fujii T, Akino K. Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor. Wound Repair and Regeneration 2004; 12 (2): 252-259. doi: 10.1111/j.1067-1927.2004.012118.x
  • 30. Al-Omar NA, Al-Qutub MN, Ramalingam S, Al-Kindi M, Nooh N et al. Bone regeneration using bone morphogenetic protein-2 and biphasic calcium phosphate with and without collagen membrane in calvarial standardized defects: an in vivo microcomputed tomographic experiment in rats. The International Journal of Periodontics & Restorative Dentistry 2016; 36: 161-170. doi: 10.11607/prd.2375
  • 31. Mokbel N, Naaman N, Nohra J, Badawi N. Healing patterns of critical size bony defects in rats after grafting with bone substitutes soaked in recombinant human bone morphogenetic protein-2: histological and histometric evaluation. British Journal of Oral and Maxillofacial Surgery 2013; 51 (6): 545-549. doi: 10.1016/j.bjoms.2012.08.005
  • 32. Wikesjö UME, Sorensen RG, Kinoshita A, Jian Li X, Wozney JM. Periodontal repair in dogs: effect of recombinant human bone morphogenetic protein-12 (rhBMP-12) on regeneration of alveolar bone and periodontal attachment. Journal of Clinical Periodontology 2004; 31 (8): 662-670. doi: 10.1111/j.1600- 051X.2004.00541.x
  • 33. Akbalik ME, Ketani MA. Expression of epidermal growth factor receptors and epidermal growth factor, amphiregulin and neuregulin in bovine uteroplacental tissues during gestation. Placenta 2013; 34 (12): 1232-1242. doi: 10.1016/j. placenta.2013.09.019
  • 34. Pistilli R, Felice P, Piatelli M, Nisii A, Barausse C et al. Blocks of autogenous bone versus xenografts for the rehabilitation of atrophic jaws with dental implants: preliminary data from a pilot randomised controlled trial. European Journal of Oral Implantology 2014; 7 (2): 153-171.
  • 35. McAllister BS, Haghighat K. Bone augmentation techniques. Journal of Periodontology 2007; 78 (3): 377-396. doi: 10.1902/ jop.2007.060048
  • 36. Tonetti MS, Hämmerle CHF, European Workshop on Periodontology Group C. Advances in bone augmentation to enable dental implant placement: Consensus Report of the Sixth European Workshop on Periodontology. Journal of Clinical Periodontology 2008; 35 (8): 168-172. doi: 10.1111/j.1600- 051X.2008.01268.x
  • 37. Borie E, Fuentes R, Del Sol M, Oporo G, Engelke W. The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study. Annals of Anatomy 2011; 193 (5): 412-417. doi: 10.1016/j. aanat.2011.06.003
  • 38. Khan SN, Cammisa FP, Sandhu HS, Diwan AD, Girardi FP et al. The biology of bone grafting. Journal of the American Academy of Orthopaedic Surgeons 2005; 13 (1): 77-86.
  • 39. Potres Z, Deshpande S, Klöeppel H, Voss K, Klineberg I. Assisted wound healing and vertical bone regeneration with simultaneous implant placement: a histologic pilot study. The International Journal of Oral and Maxillofacial Implants 2016; 31 (1): 45-54. doi: 10.11607/jomi.3951
  • 40. da Silva de Oliveira JC, Luvizuto ER, Sonoda CK, Okamoto R, Garcia Junior IR. Immunohistochemistry evaluation of BMP-2 with β-tricalcium phosphate matrix, polylactic and polyglycolic acid gel, and calcium phosphate cement in rats. Oral and Maxillofacial Surgery 2017; 21 (2): 247-258. doi: 10.1007/s10006- 017-0624-3
  • 41. Liu T, Wu G, Wismeijer D, Gu Z, Liu Y. Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone 2013; 56 (1): 110-118. doi: 10.1016/j.bone.2013.05.017
  • 42. Thoma DS, Lim HC, Sapata VM, Yoon SR, Jung RE et al. Recombinant bone morphogenetic protein-2 and platelet-derived growth factor-BB for localized bone regeneration. Histologic and radiographic outcomes of a rabbit study. Clinical Oral Implants Research 2017; 28 (11): 236-243. doi: 10.1111/clr.13002
  • 43. Pelaez M, Susin C, Lee J, Fiorini T, Bisch FC et al. Effect of rhBMP-2 dose on bone formation/maturation in a rat critical-size calvarial defect model. Journal of Clinical Periodontology 2014; 41 (8): 827-836. doi: 10.1111/jcpe.12270
  • 44. Hong SJ, Kim CS, Han Dk, Cho IH, Jung UW et al. The effect of a fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects. Biomaterials 2006; 27 (20): 3810-2816. doi: 10.1016/j.biomaterials.2006.02.045
  • 45. Shinohara Y, Nakamura T, Shirakata Y, Noguchi K. Bone healing capabilities of recombinant human bone morphogenetic protein-9 (rhBMP-9) with a chitosan or collagen carrier in rat calvarial defects. Dental Materials Journal 2016; 35 (3): 454-460. doi: 10.4012/dmj.2015-242
  • 46. Dazai S, Akita S, Hirano A, Rashid MA, Naito S et al. Leukemia inhibitory factor enhances bone formation in calvarial bone defect. The Journal of Craniofacial Surgery 2000; 11 (6): 513-520. doi: 10.1097/00001665-200011060-00002
  • 47. Arzeno A, Wang T, Huddleston JI. Abundant heterotopic bone formation following use of rhBMP-2 in the treatment of acetabular bone defects during revision hip arthroplasty. Arthroplasty Today 2018; 4 (2): 162-168. doi: 10.1016/j.artd.2017.12.004
  • 48. Tannoury CA, An HS. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. The Spine Journal 2014; 14 (3): 552-559. doi: 10.1016/j.spinee.2013.08.060
  • 49. Vural AC, Odabas S, Korkusuz P, Yar Sağlam AS, Bilgiç E et al. Cranial bone regeneration via BMP-2 encoding mesenchymal stem cells. Artificial Cells, Nanomedicine, and Biotechnology 2017; 45 (3): 544-550. doi: 10.3109/21691401.201
  • 50. Kimelman Bleich N, Kallai I, Lieberman JR, Schwarz EM, Pelled G et al. Gene therapy approaches to regenerating bone. Advanced Drug Delivery Reviews 2012; 64 (12): 1320-1330. doi: 10.1016/j. addr.2012.03.007
  • 51. Abdala PMF, Iyomasa MM, Sato S, Bentley MV, Pitol DL et al. Osteoinductivity potential of rhBMP-2 associated with two carriers in different dosages. Anatomical Science International 2010; 85 (4): 181-188. doi: 10.1007/s12565-010-0075-5
  • 52. Ishigaki R, Takagi M, Igarashi M, Ito K. Gene expression and immunohistochemical localization of osteonectin in association with early bone formation in the developing mandible. The Histochemical Journal 2002; 34 (1-2): 57-66 doi: 10.1023/a:1021352110531
  • 53. Ivanovski S, Li H, Daley T, Bartold PM. An immunohistochemical study of matrix molecules associated with barrier membrane-mediated periodontal wound healing. Journal of Periodontal Research 2000; 35 (3): 115-126. doi: 10.1034/j.1600-0765.2000.035003115.x
  • 54. Tera T de M, Nascimento RD, Prado RF do, Santamaria MP, Jardini MA. Immunolocalization of markers for bone formation during guided bone regeneration in osteopenic rats. Journal of Applied Oral Science 2014; 22 (6): 541-553. doi: 10.1590/1678-775720140190
  • 55. Hsu YT, Al-Hezaimi K, Galindo-Moreno P, O’Valle F, Al-Rasheed A et al. Effects of recombinant human bone morphogenetic protein-2 on vertical bone augmentation in a canine model. Journal of Periodontology 2017; 88 (9): 896-905. doi: 10.1902/jop.2017.160516
  • 56. Issa JP, Gonzaga M, Kotake BG, de Lucia C, Ervolino E et al. Bone repair of critical size defects treated with autogenic, allogenic, or xenogenic bone grafts alone or in combination with rhBMP-2. Clinical Oral Implants Research 2016; 27 (5): 558-566. doi: 10.1111/clr.12622
  • 57. Luvizuto ER, de Oliveira JCS, Gomes-Ferreira PHS, Pereira CCS, Faverani LP et al. Immunohistochemical response in rats of beta-tricalcium phosphate (TCP) with or without BMP-2 in the production of collagen matrix critical defects. Acta Histochemica 2017; 119 (3): 302-308. doi: 10.1016/j. acthis.2017.02.006
  • 58. Cheng TL, Leblanc E, Kalinina A, Cantrill LC, Valtchev P et al. A bioactive coating enhances bone allografts in rat models of bone formation and critical defect repair. Journal of Orthopaedic Research 2019; 37 (11): 2278-2286. doi: 10.1002/ jor.24409
  • 59. Koerner JD, Markova DZ, Schroeder GD, Calio BP, Shah A et al. The local cytokine and growth factor response to recombinant human bone morphogenetic protein-2 (rhBMP-2) after spinal fusion. The Spine Journal 2018; 18 (8): 1424-1433. doi: 10.1016/j.spinee.2018.03.006
  • 60. Sharmin F, O’Sullivan M, Malinowski S, Lieberman JR, Khan Y. Large scale segmental bone defect healing through the combined delivery of VEGF and BMP-2 from biofunctionalized cortical allografts. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2019; 107 (4): 1002-1010. doi: 10.1002/jbm.b.34193
  • 61. Riggs BL. The mechanisms of estrogen regulation of bone resorption. The Journal of Clinical Investigation 2000; 106 (10): 1203-1204. doi: 10.1172/JCI11468
  • 62. Duarte PM, César Neto JB, Gonçalves PF, Sallum EA, Nociti JF. Estrogen deficiency affects bone healing around titanium implants: a histometric study in rats. Implant Dentistry 2003; 12 (4): 340-346. doi: 10.1097/01.id.0000099750.26582.4b
  • 63. He YX, Zhang G, Pan XH, Liu Z, Zheng LZ et al. Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: a drill-hole defect model. Bone 2011; 48 (6): 1388-1400. doi: 10.1016/j.bone.2011.03.720
  • 64. Jardini MAN, De Marco AC, De Melo Filho AB, Kerbauy WD, Nascimento RD et al. Analysis of the volume of autogenous cancellous bone grafts with or without the use of ePTFE membranes in ovariectomized rats. Brazilian Dental Science 2013; 16 (3): 35-46. doi: 10.14295/bds.2013.v16i3.880
  • 65. Fuegl A, Tangl S, Keibl C, Watzek G, Redl H et al. The impact of ovariectomy and hyperglycemia on graft consolidation in rat calvaria. Clinical Oral Implants Research 2011; 22 (5): 524-529. doi: 10.1111/j.1600-0501.2010.02048.x
  • 66. Do Prado Ribeiro DC, De Abreu Figueira L, Issa JPM, Dias Vecina CA, Josedias F et al. Study of the osteoconductive capacity of hydroxyapatite implanted into the femur of ovariectomized rats. Microscopy Research Technique 2012; 75 (2): 133-137. doi: 10.1002/jemt.21035
  • 67. Durão SF, Gomes PS, Colaço BJ, Silva JC, Fonseca HM et al. The biomaterial-mediated healing of critical size bone defects in the ovariectomized rat. Osteoporosis International 2014; 25 (5): 1535-1545. doi: 10.1007/s00198-014-2656-y
  • 68. Song Y, Wan L, Zhang S, Du Y. Biological response to recombinant human bone morphogenetic protein-2 on boneimplant osseointegration in ovariectomized experimental design. Journal of Craniofacial Surgery 2019; 30 (1): 141-144. doi: 10.1097/SCS.0000000000004992
  • 69. Yang S, Wang L, Feng S, Yang Q, Yu B et al. Enhanced bone formation by strontium modified calcium sulfate hemihydrate in ovariectomized rat critical-size calvarial defects. Biomedical Materials 2017; 12 (3): 035004. doi: 10.1088/1748-605X/aa68bc