Estimation of genetic parameters for weaning weight of Awassi lambs by using classical and Bayesian methods

The aim of this study was to estimate variance components and genetic parameters with six different animal models and two approaches Bayesian and classical on weaning weight WW of Awassi lambs. For this purpose, the data were obtained from Sheep and Goat Breeders' Associations of Osmaniye in Turkey. The data of 4971 progenies from 80 rams and 1917 ewes born between 2012 and 2016 raised under traditional conditions were evaluated. Year/season, sex, birth type, dam age, and flock size were fixed effects. All these effects except birth type were found statistically significant P

___

  • 1. VanVleck LD, Wadell LH, Henderson CR. Components of variance associated with milk and fat records of artificially sired Holstein daughters. Journal of Animal Science 1961; 20 (4): 812-816. doi: 10.2527/jas1961.204812x
  • 2. Cunningham EP, Henderson CR. An iterative procedure for estimating fixed effects and variance components in mixed model situations. Biometrics 1968; 24 (1): 13-25. doi: 10.2307/2528457
  • 3. Barbosa L, Lopes PS, Regazzi AJ, Torres RA, Santana Junior ML et al. Estimação de parâmetros gené-ticos em suínos usando Amostrador de Gibbs. Revista Brasileira de Zootecnia 2008; 37 (7): 1200-1206 (in Spanish with an abstract in English).
  • 4. Crump SL. The estimation of variance components in analysis of variance. Biometrics Bulletin 1946; 2 (1): 7-11. doi: 10.2307/3002006
  • 5. Henderson CR. Selection index and expected genetic advance. Statistical Genetics and Plant Breeding 1963; 982: 141-163.
  • 6. Searle SR. Review of sire-proving methods in New Zealand, Great Britain, and New York State. Journal of Dairy Science 1964; 47 (4): 402-413. doi: 10.3168/jds.S0022- 0302(64)88674-4
  • 7. Cunningham EP. The relative efficiencies of selection indexes. Acta Agriculturae Scandinavica 1965; 19 (1): 45-48. doi: 10.1080/00015126909433180
  • 8. Patterson HD, Thompson R. Recovery of interblock information when block sizes are unequal. Biometrika 1971; 58 (3): 545-554. doi: 10.1093/biomet/58.3.545
  • 9. Meyer K. Variance components due to direct and maternal effects for growth traits of Australian beef cattle. Livestock Production Science 1992; 31 (3-4): 179-204. doi: 10.1016/0301- 6226(92)90017-X
  • 10. Mestav B. Kantitatif özelliklerin analizinde hata terimi normal, student-t veya slash dağılımı gösteren doğrusal modellerin kullanılması. PhD, Adnan Menderes University, Aydın, Turkey, 2011 (in Turkish).
  • 11. Foulley JL, Gianola D, Im S. Genetic evaluation of traits distributed as poisson-binomial with reference to reproductive characters. Theoretical and Applied Genetics 1987; 73 (6): 870- 877. doi: 10.1007/BF00289392
  • 12. Fernando RL, Gianola D, Grossman M. Identifying all connected subsets in a two-way classification without interaction. Journal of Dairy Science 1983; 66: 1399-1402. doi: 10.3168/jds.S0022-0302(83)81951-1
  • 13. Lessa De Assis GM, Junior JMC, Euclydes RF, Correa FJC. Bayesian inference on variance components using simulated data. In: 7th World Congress on Genetics Applied to Livestock Production; Montpellier, France; 2002. No. 17-22.
  • 14. Gianola D. Theory and analysis of threshold characters. Journal of Animal Science 1982; 54: 1079-1096. doi: 10.2527/ jas1982.5451079x
  • 15. De Villemereuil P, Gimenez O, Doligez B. Comparing parent– offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations: a simulation study for Gaussian and binary traits. Methods in Ecology and Evolution 2013; 4 (3): 260-275. doi: 10.1111/2041-210X.12011
  • 16. Martínez-García PJ, Famula RA, Leslie C, McGranahan GH, Famula TR et al. Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia). Tree Genetics & Genomes 2017; 13 (5): 109. doi: 10.1007/s11295- 017-1187-z
  • 17. Pretorius AL, Van der Merwe AJ. A Nonparametric Bayesian approach for genetic evaluation in animal breeding. South African Journal of Animal Science 2000; 30 (2): 138-148. doi: 10.4314/sajas.v30i2.3863
  • 18. Gowane GR, Prince LLL, Lopes FB, Paswan C, Sharma RC. Genetic and phenotypic parameter estimates of live weight and daily gain traits in Malpura sheep using Bayesian approach. Small Ruminant Research 2015; 128: 10-18. doi: 10.1016/j. smallrumres.2015.04.016
  • 19. Barbosa LT, Santos GDEB, Muniz EN, Azevedo HC, Fagundes JL. Genetic parameters for growth traits of Santa Ines Sheep. Revista Caatinga 2015; 28 (4): 211-216. doi: 10.1590/1983-21252015v28n423rc
  • 20. Sorensen D, Gianola D. Likelihood, Bayesian and MCMC Methods in Quantitative Genetics. 1st ed. New York, NY, USA: Springer Science & Business Media; 2002.
  • 21. Waldmann P, Hallander J, Hoti F, Sillanpää MJ. Efficient Markov chain Monte Carlo implementation of Bayesian analysis of additive and dominance genetic variances in noninbred pedigrees. Genetics 2008; 179:1101-1112. doi: 10.1534/genetics.107.084160
  • 22. Van Tassell CP, Van Vleck LD. A Manual for Use of MTGSAM. A Set of FORTRAN Programs to Apply Gibbs Sampling to Animal Models for Variance Component Estimation. Washington, DC, USA: U.S. Department of Agriculture, Agricultural Research Service; 1995.
  • 23. Van Kaam JBCHM. GIBANAL–Analyzing Program for Markov Chain Monte Carlo Sequences. Version 2.4. Wageningen, the Netherlands: Wageningen Agricultural University, 1998.
  • 24. Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software 2010; 33 (2): 1-22.
  • 25. Bink MCAM, Boer MP, Ter Braak CJF, Jansen J, Voorrips RE et al. Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 2008; 161: 85-96. doi: 10.1007/s10681- 007-9516-1
  • 26. Fresnedo-Ramírez J, Frett TJ, Sandefur PJ, Salgado-Rojas A, Clark JR et al. QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs. Tree Genetics & Genomes 2016; 12 (2): 25. doi: 10.1007/s11295-016-0985-z
  • 27. Jawasreh K, Ismail ZB, Iya F, Castañeda-Bustos VJ, ValenciaPosadas M. Genetic parameter estimation for pre-weaning growth traits in Jordan Awassi sheep. Veterinary World 2018; 11 (2): 254-258. doi: 10.14202/vetworld.2018.254-258
  • 28. Tariq MM, Bajwa MA, Abbas F, Waheed A, Bokhari FA et al. Heritability of pre-weaning growth performance traits in Mengali sheep in (Balochistan) Pakistan. International Journal of Biodiversity and Conservation 2010; 2 (10): 284-288.
  • 29. Aksoy Y, Ulutaş Z, Şen U, Şirin E, Şahin A. Estimates of genetic parameters for different body weights and muscle and fat depths of Karayaka lambs. Turkish Journal of Veterinary and Animal Sciences 2016; 40 (1): 13-20. doi:10.3906/vet-1504-16
  • 30. Hassen Y, Fuerst‐Waltl B, Sölkner J. Genetic parameter estimates for birth weight, weaning weight and average daily gain in pure and crossbred sheep in Ethiopia. Journal of Animal Breeding and Genetics 2003; 120 (1): 29-38. doi: 10.1046/j.1439-0388.2003.00361.x
  • 31. El-Wakil SI, Gad SM. Evaluation of direct and maternal (co) variance components and heritabilities for some body weights and growth traits in Barki sheep. Egyptian Journal of Sheep and Goat Sciences 2014; 9 (1): 21-30.
  • 32. Ekiz B, Özcan M, Yılmaz A, Ceyhan A. Estimates of genetic parameters for direct and maternal effects with six different models on birth and weaning weights of Turkish Merino lambs. Turkish Journal of Veterinary Animal Science 2004; 28: 383-389.
  • 33. Willham RL. The role of maternal effects in animal breeding: III. Biometrical aspects of maternal effects in animals. Journal of Animal Science 1972; 35 (6): 1288-1293. doi: 10.2527/ jas1972.3561288x
  • 34. Akaike H. A new look at the statistical model identification. IEEE Transactions On Automatic Control 1974; 19: 716- 723. doi: 10.1109/TAC.1974.1100705
  • 35. De Villemereuil P. Estimation of a Biological Trait Heritability Using the Animal Model. How to Use the MCMCglmm R Package. Paris, France: École Pratique des Hautes Études; 2012.
  • 36. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2012.
  • 37. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2002; 64 (4): 583-639. doi: 10.1111/1467-9868.00353
  • 38. Hossein-Zadeh NG, Ardalan M. Estimation of genetic parameters for body weight traits and litter size of Moghani sheep, using a Bayesian approach via Gibbs sampling. Journal of Agricultural Science 2010; 148 (3): 363-370. doi: 10.1017/ S0021859610000080
  • 39. Sarmento JLR, Torres RA, Sousa WH, Pereira CS, Lopes PS et al. Estimation of genetic parameters for growth traits of Santa Inês sheep using single and multiple-trait models. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 2006; 58: 581– 589 (in Portuguese with an abstract in English). doi: 10.1590/ S0102-09352006000400021
  • 40. Sousa JER, Oliveira SMP, Lima FAM, Silva FLR, Silva MA. Genetic and environmental effects for growth traits in Santa Inês hair sheep at Ceará State, Brazil. Revista Ciência Agronômica 2006; 37: 364-368 (in Portuguese with an abstract in English).
  • 41. Bahreini-Behzadi MR, Shahroudi FE, Van Vleck LD. Estimates of genetic parameters for growth traits in Kermani sheep. Journal of Animal Breeding and Genetics 2007; 124 (5), 296- 301. doi: 10.1111/j.1439-0388.2007.00672.x
  • 42. Baker RL. The role of maternal effects on the efficiency of selection in beef cattle: a review. Proceedings of the New Zealand Society of Animal Production 1980; 40: 285-303.
  • 43. Gerstmayr S. Impact of the data structure on the reliability of the estimated genetic parameters in an animal model with maternal effects. Journal of Animal Breeding and Genetics 1992; 109 (1-6): 321-336. doi: 10.1111/j.1439-0388.1992. tb00412.x
  • 44. Maniatis N, Pollott G. Maternal effects on weight and ultrasonically measured traits of lambs in a small closed Suffolk flock. Small Ruminant Research 2002; 45 (3): 235-246. doi: 10.1016/S0921-4488(02)00114-1
  • 45. Okut H, Bromley CM, Van Vleck LD, Snowder GD. Genotypic expression at different ages: I. Prolificacy traits of sheep. Journal of Animal Science 1999; 77 (9): 2357-2365. doi: 10.2527/1999.7792357x
  • 46. Synman MA, Olivier JJ, Olivier WJ. Variance components and genetic parameters for body weight and fleece traits of Merino sheep in an arid environment. South African Journal of Animal Science 1996; 26 (1): 11-14.
  • 47. Assan N, Makuza S, Mhlanga F, Mabuku O. Genetic evaluation and selection response of birth weight and weaning weight in Indigenous Sabi sheep. Asian-Australasian Journal of Animal Sciences 2002; 15 (12): 1690-1694. doi: 10.5713/ajas.2002.1690
  • 48. Aguirre EL, Mattos EC, Eler JP, Neto AB, Ferraz JB. Estimation of genetic parameters and genetic changes for growth characteristics of Santa Ines sheep. Genetics and Molecular Research 2016; 15 (3): 1-12. doi: 10.4238/gmr.15038910
  • 49. Hammoud MH, Salem MMI. Estimates of variance components and heritabilities of pre-weaning growth traits of Barki and Rahmani lambs. Egyptian Journal of Animal Production 2017; 54 (3): 199-205.
  • 50. Kumar S, Kumar V, Gangaraju G, Nath S, Thiruvenkadan AK. Estimates of direct and maternal (co)variance components as well as genetic parameters of growth traits in Nellore sheep. Tropical Animal Health and Production 2017; 49 (7): 1431- 1438. doi: 10.1007/s11250-017-1344-2
  • 51. Mallick PK, Pourouchottamane R, Rajapandi S, Thirumaran SMK, Venkataraman R et al. Influence of genetic and non genetic factors on growth traits of Bharat Merino sheep in sub-temperate climate of Kodai hills of Tamil Nadu, India. Indian Journal of Animal Research 2017; 51 (2): 365-370. doi: 10.18805/ijar.10979
  • 52. Kariuki CM, Ilatsia ED, Kosgey IS, Kahi AK. Direct and maternal (co)variance components, genetic parameters and annual trends for growht traits of Dorper sheep in Semi-Arid Kenya. Tropical Animal Health and Production 2010; 42 (3): 473-481. doi: 10.1007/s11250-009-9446-0
  • 53. Gamasaee VA, Hafezian SH, Ahmadi A, Baneh H, Farhadi A et al. Estimation of genetic parameters for body weight at different ages in Mehraban sheep. African Journal of Biotechnology 2010; 9 (32): 5218-5223.
  • 54. El-Awady HG, Oudah EZM, Shalaby NA, El-Arian MN, Metawi HR. Genetic improvement study on pre-weaning body weight of Egyptian Rahmani lambs under a pure breeding production system. Options Méditerranéennes 2011; 100: 311- 316.
  • 55. Nassiri B, Taghi M, Asefi A, Karami M, Fayazi J. Bayesian estimation of genetic parameters of growth traits in Zandi sheep. In: Proceedings of 5th International Scientific Conference; Basrah, Iraq; 2016. pp. 236-253.
  • 56. De Magnabosco CU, Lôbo RB, Famula TR. Bayesian inference for genetic parameter estimation on growth traits for Nelore cattle in Brazil, using the Gibbs sampler. Journal of Animal Breeding and Genetics 2000; 117 (3): 169-188.
  • 57. Guan J, Wang W, Hu Y, Wang M, Tian T et al. Estimation of genetic parameters for growth trait of turbot using Bayesian and REML approaches. Acta Oceanologica Sinica 2017; 36 (6): 47-51.