Metabolomics-driven Approaches on Interactions Between Enterococcus faecalis and Candida albicans Biofilms

Objectives: This study aimed to determine the effect of Enterococcus faecalis on the cell growth and hyphal formation of Candida albicans and to understand the exact mechanism of candidal inhibition by the existence of E. faecalis by metabolomic analysis. Materials and Methods: Single- and dual-species biofilms of E. faecalis and C. albicans were formed in a microtiter plate, and the metabolomic profiles of both biofilms was determined by gas chromatography-mass spectrometry. The hyphal cell growth of C. albicans after treatment with both the supernatant and biofilm cells of E. faecalis was examined microscopically. The expression levels of Efg1 and the images of C. albicans cell wall in single- and dual-species biofilms were determined by real-time quantitative polymerase chain reaction and transmission electron microscopy, respectively. The violacein levels produced by Chromobacterium violaceum were measured to determine the quorum sensing (QS) inhibitory activity of single- and dual-species biofilms. Results: The biofilm cell growth, Efg1 expression, and hyphal development of C. albicans were inhibited by E. faecalis. Compared to single-species biofilms, alterations in carbohydrate, amino acid, and polyamine metabolites were observed in the dual-species biofilm for both microorganisms. Putrescine and pipecolic acid were detected at high levels in dual-species biofilm. A thicker β-glucan chitin and a denser and narrower fibrillar mannan layer of C. albicans cell wall were observed in dual-species biofilm. QS inhibitory activity was higher in dual-species biofilm suspensions of E. faecalis and C. albicans than in their single-species biofilms. Conclusion: E. faecalis inhibited the hyphal development and biofilm formation of C. albicans. Biofilm suspensions of C. albicans and E. faecalis showed an anti-QS activity, which increased even further in the environment where the two species coexisted. Investigation of putrescine and pipecolic acid can be an important step to understand the inhibition of C. albicans by bacteria.

Enterococcus faecalis ve Candida albicans Biyofilmleri Arasındaki Etkileşimler Üzerine Metabolomik Odaklı Yaklaşımlar

Amaç: Enterococcus faecalis’in Candida albicans’ın hücre büyümesi ve hifal gelişimi üzerine etkisini değerlendirmeyi ve E. faecalis varlığında candidal inhibisyonunun ana mekanizmasını metabolomik analizler ile belirlemeyi amaçladık. Gereç ve Yöntemler: E. faecalis ve C. albicans’ın tek ve ikili biyofilmleri mikroplak içinde geliştirildi ve her iki biyofilmin metabolit profili gaz kromatografisi-kütle spektrometresi ile belirlendi. C. albicans’ın hifal hücre büyümesi, E. faecalis’in hem süpernatant hem de biyofilm hücreleri ile muamelesi sonrasında mikroskobik olarak incelendi. Efg1 ekspresyon seviyeleri ve tek ve ikili biyofilmlerdeki C. albicans’ın hücre duvarı görüntüleri sırasıyla RT-qPCR ve transmisyon elektron mikroskobu ile belirlendi. Chromobacterium violaceum tarafından üretilen violacein seviyeleri, tek ve ikili biyofilmlerin quorum sensing (QS) inhibitör aktivitelerini belirlemek amacıyla ölçüldü. Bulgular: C. albicans’ın biyofilm hücre büyümesi, Efg1 ekspresyonu ve hifal gelişimi E. faecalis tarafından inhibe edilmiştir. Tekli biyofilmler ile karşılaştırıldığında, her iki mikroorganizma için ikili biyofilmde karbonhidrat, amino asit ve poliamin metabolitlerinde değişiklikler gözlenmiştir. İkili biyofilmde putresin ve pipekolik asit yüksek düzeyde tespit edilmiştir. C. albicans hücre duvarının daha kalın β-glukan kitin ve daha yoğun ve daha dar fibrillar mannan tabakası ikili biyofilmde gözlenmiştir. E. faecalis ve C. albicans’ın ikili tür biyofilm süspansiyonlarında ölçülen QS inhibitör aktivitesinin tekli biyofilmlerine kıyasla daha yüksek olduğu bulunmuştur. Sonuç: E. faecalis, C. albicans’ın hifal gelişimini ve biyofilm oluşumunu inhibe etmiştir. C. albicans ve E. faecalis’in biyofilm süspansiyonları, iki türün bir arada bulunduğu ortamda daha da artan bir anti-QS aktivitesi göstermiştir. Putresin ve pipekolik asitin araştırılması, C. albicans’ın bakteriler tarafından inhibisyonunu anlamak için önemli bir adım olabilir.

Kaynakça

1. Burmolle M, Ren DW, Bjarnsholt T, Sorensen SJ. Interactions in multispecies biofilms: do they actually matter? Trends Microbiol. 2014;22:84-91.

2. Morales DK, Grahl N, Okegbe C, Dietrich LEP, Jacobs NJ, Hogan DA. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. mBio. 2013;4:e00526-12.

3. Tampakakis E, Peleg AY, Mylonakis E. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica Serovar Typhimurium. Eukaryot Cell. 2009;8:732-737.

4. Cruz MR, Graham CE, Gagliano BC, Lorenz MC, Garsin DA. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun. 2013;81:189-200.

5. Ten Oever J, Netea MG. The bacteriome-mycobiome interaction and antifungal host defense. Eur J Immunol. 2014;44:3182-3191.

6. Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36:1-53.

7. Wenner JJ, Rettger LF. A systematic study of the Proteus group of bacteria. J Bacteriol. 1919;4:331-353.

8. Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69:71-92.

9. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4:119-128.

10. Reaves ML, Rabinowitz JD. Metabolomics in systems microbiology. Curr Opin Biotechnol. 2011;22:17-25.

11. Xu YJ, Wang CS, Ho WE, Ong CN. Recent developments and applications of metabolomics in microbiological investigations. Trac-Trend Anal Chem. 2014;56:37-48.

12. Kart D, Tavernier S, Van Acker H, Nelis HJ, Coenye T. Activity of disinfectants against multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa. Biofouling. 2014;30:377-383.

13. Bandara HM, Cheung BP, Watt RM, Jin LJ, Samaranayake LP. Secretory products of Escherichia coli biofilm modulate Candida biofilm formation and hyphal development. J Investig Clin Dent. 2013;4:186-199.

14. Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389-3402.

15. Sankar Ganesh P, Ravishankar Rai V. Attenuation of quorum-sensingdependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. J Tradit Complement Med. 2018;8:170-177.

16. Kart D, Yabanoglu Ciftci S, Nemutlu E. Altered metabolomic profile of dual-species biofilm: interactions between Proteus mirabilis and Candida albicans. Microbiol Res. 2020;230:126346.

17. Netea MG, Gow NA, Munro CA, Bates S, Collins C, Ferwerda G, Hobson RP, Bertram G, Hughes HB, Jansen T, Jacobs L, Buurman ET, Gijzen K, Williams DL, Torensma R, McKinnon A, MacCallum DM, Odds FC, Van der Meer JW, Brown AJ, Kullberg BJ. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest. 2006;116:1642-1650.

18. Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 2016;18:310-321.

19. Strus M, Kucharska A, Kukla G, Brzychczy-Wloch M, Maresz K, Heczko PB. The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect Dis Obstet Gynecol. 2005;13:69-75.

20. Kean R, Rajendran R, Haggarty J, Townsend EM, Short B, Burgess KE, Lang S, Millington O, Mackay WG, Williams C, Ramage G. Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions. Front Microbiol. 2017;8:258.

21. Blank LM, Sauer U. TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology (Reading). 2004;150:1085-1093.

22. Fox EP, Cowley ES, Nobile CJ, Hartooni N, Newman DK, Johnson AD. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures. Curr Biol. 2014;24:2411-2416. 23. Pan J, Hu C, Yu JH. Lipid biosynthesis as an antifungal target. J Fungi (Basel). 2018;4:50.

24. Doedt T, Krishnamurthy S, Bockmühl DP, Tebarth B, Stempel C, Russell CL, Brown AJ, Ernst JF. APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell. 2004;15:3167-3180.

25. Porat Z, Wender N, Erez O, Kahana C. Mechanism of polyamine tolerance in yeast: novel regulators and insights. Cell Mol Life Sci. 2005;62:3106- 3116.

26. Valdes-Santiago L, Ruiz-Herrera J. Stress and polyamine metabolism in fungi. Front Chem. 2014;1:42.

27. Hibi M, Mori R, Miyake R, Kawabata H, Kozono S, Takahashi S, Ogawa J. Novel enzyme family found in filamentous fungi catalyzing trans-4- hydroxylation of l-pipecolic acid. Appl Environ Microbiol. 2016;82:2070- 2077.

28. Gouesbet G, Jebbar M, Talibart R, Bernard T, Blanco C. Pipecolic acid is an osmoprotectant for Escherichia coli taken up by the general osmoporters ProU and ProP. Microbiology (Reading). 1994;140:2415-2422.

29. Ene IV, Walker LA, Schiavone M, Lee KK, Martin-Yken H, Dague E, Gow NA, Munro CA, Brown AJ. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. mBio. 2015;6:e00986.

Kaynak Göster

Turkish Journal of Pharmaceutical Sciences
  • ISSN: 1304-530X
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2000

301