Remarks on the one-dimensional sloshing problem involving the $p$-Laplacian operator

In this paper, we study the inverse nodal problem and the eigenvalue gap for the one-dimensional sloshing problem with the $p$-Laplacian operator. By applying the Prüfer substitution, we first derive the reconstruction formula of the depth function by using the information of the nodal data. Furthermore, we employ the Tikhonov regularization method to consider how to reconstruct the depth function using only zeros of one eigenfunction. Finally, we investigate the eigenvalue gap under the restriction of symmetric single-well depth functions. We show the gap attains its minimum when the depth function is constant.

___

  • [1] Binding PA, Drábek P. Sturm–Liouville theory for the p-Laplacian. Studia Scientiarum Mathematicarum Hungarica 2003; 40: 373-396. doi: 10.1556/sscmath.40.2003.4.1
  • [2] Bognár G, Dosly O. The ratio of eigenvalues of the Dirichlet eigenvalue problem for equations with one-dimensional p-Laplacian. Abstract and Applied Analysis 2010; 2010. doi: 10.1155/2010/123975
  • [3] Birkhoff G, Rota GC. Ordinary differential equations. New York, NY, USA: Wiley, 1989.
  • [4] Cooper RM. Dynamics of liquids in moving containers. American Rocket Society Journal 1960; 30: 725-729. doi: 10.2514/8.5212
  • [5] Chen X, Cheng YH, Law CK. A Tikhonov regularization for the inverse nodal problem for p-Laplacian. Journal of Mathematical Analysis and Applications 2012; 395: 230-240. doi: 10.1016/j.jmaa.2012.03.033
  • [6] Chen X, Cheng YH, Law CK. Reconstructing potentials from zeros of one eigenfunction. Transactions of the American Mathematical Society 2011; 363: 4831-4851. doi: 10.1090/S0002-9947-2011-05258-X
  • [7] Coddington EA, Levinson N. Theory of ordinary differential equations. New York, NY, USA: McGraw-Hill, 1955.
  • [8] Chen CZ, Law CK, Lian WC, Wang WC. Optimal upper bounds for the eigenvalue ratios of one-dimensional p-Laplacian. Proceedings of the American Mathematical Society 2013; 141: 883-893. doi: 10.1090/S0002-9939- 2012-11365-6
  • [9] Cheng YH, Law CK, Tsay J. Remarks on a new inverse nodal problem. Journal of Mathematical Analysis and Applications 2000; 248: 145-155. doi: 10.1006/jmaa.2000.6878
  • [10] Cheng YH, Law CK, Lian WC, Wang WC. An inverse nodal problem and Ambarzumyan problem for the periodic p-Laplacian operator with integrable potentials. Taiwanese Journal of Mathematics 2015; 19: 1305-1316. doi: 10.11650/tjm.19.2015.5481
  • [11] Cheng YH, Lian WC, Wang WC. The dual eigenvalue problems for p-Laplacian. Acta Mathematica Hungarica 2014; 142: 132-151. doi: 10.1007/s10474-013-0356-2
  • [12] Diaz JI. Nonlinear Partial Differential Equations and Free Boundaries, vol. I. Elliptic Equations. Research Notes in Mathematics, Vol. 106. Boston, MA, USA: Pitman, 1985.
  • [13] Diaz JI. Qualitative study of nonlinear parabolic equations: an introduction. Extracta Mathematicae 2001; 16: 303-341.
  • [14] Elbert A. A half-linear second order differential equation. In: Qualitative theory of differential equations, Vol.I, II (Szeged, 1979). Colloquia Math. Soc. János Bolyai, 30. Amsterdam, Netherlands: North-Holland, 1981, pp. 153-180.
  • [15] Hald OH, McLaughlin J. Solutions of inverse nodal problems. Inverse Problems 1989; 5: 307-347. doi: 10.1088/0266- 5611/5/3/008
  • [16] Isaacson M, Premasiri S. Hydrodynamic damping due to baffles in a rectangular tank. Canadian Journal of Civil Engineering 2001; 28: 608-616. doi: 10.1139/l01-022
  • [17] Ladyzhenskaya OA. The mathematical theory of viscous incompressible flow. 2nd ed. New York, NY, USA: Gordon and Breach, 1969.
  • [18] Lions JL. Quelques methodes de resolution des problemes aux limites non lineaires. Paris, France: Dunod, 1969.
  • [19] Li C. Problems of eigenvalue ratios for one-dimensional p-Laplace equations. Acta Mathematicae Applicatae SinicaEnglish Series 2015; 38: 806-815.
  • [20] McLaughlin JR. Inverse spectral theory using nodal points as data-A uniqueness result. Journal of Differential Equations 1988; 73: 354-362. doi: 10.1016/0022-0396(88)90111-8
  • [21] Pélissier MC, Reynaud ML. Etude d’un modèle mathématique d’écoulement de glacier. Comptes Rendus des l’Académie des Sciences. Série I. Mathématique. 1974; 279: 531-534 (in French) .
  • [22] Rudin W. Real and Complex Analysis, 3rd ed. New York, NY, USA: McGraw-Hill, 1987.
  • [23] Shen CL. On the nodal sets of the eigenfunctions of the string equations. SIAM Journal on Mathematical Analysis 1988; 19: 1419-1424. doi: 10.1137/0519104
  • [24] Showalter RE, Walkington NJ. Diffusion of fluid in a fissured medium with microstructure. SIAM Journal on Mathematical Analysis 1991; 22: 1702-1722. doi: 10.1137/0522105
  • [25] Stoker JJ. Water waves: the mathematical theory with applications. New York, NY, USA: John Wiley & Sons, 1992.
  • [26] Troesch BA. Free oscillations of a fluid in a container, Boundary Problems in Differential Equations. Madison, WI, USA: University of Wisconsin Press, 1960, pp. 279-299.
  • [27] Troesch BA. An isoperimetric sloshing problem. Communications on Pure and Applied Mathematics 1965; 18: 319-338. doi: 10.1002/cpa.3160180124
  • [28] Troesch BA. An isoperimetric problem for sloshing in a shallow convex container. Zeitschrift für angewandte Mathematik und Physik 1970; 21: 501-513. doi: 10.1007/BF01587680
  • [29] Yang XF. A new inverse nodal problem. Journal of Differential Equations 2001; 169: 633-653. doi: 10.1006/jdeq.2000.3911
  • [30] Yang XF. A solution of the inverse nodal problem. Inverse Problems 1997; 13: 203-213. doi: 10.1088/0266- 5611/13/1/016.