Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers

In this investigation, by using a relation of subordination, we define a new subclass of analytic bi-univalent functions associated with the Fibonacci numbers. Moreover, we survey the bounds of the coefficients for functions in this class.

___

  • [1] Altınkaya Ş, Yalçın S. Estimate for initial MacLaurin of general subclasses of bi-univalent functions of complex order involving subordination. Honam Mathematical Journal 2018; 40: 391-400.
  • [2] Altınkaya Ş, Yalçın S. Faber polynomial coefficient estimates for bi-univalent functions of complex order based on subordinate conditions involving of the Jackson (p, q)-derivative operator. Miskolc Mathematical Notes 2017; 18 (2): 555-572.
  • [3] Altınkaya Ş, Yalçın S, Çakmak S. A Subclass of bi-univalent functions based on the Faber polynomial expansions and the Fibonacci Numbers. Mathematics 2019; 7(2): 1-9.
  • [4] Brannan DA, Taha TS. On some classes of bi-univalent functions. Studia Universitatis Babeş-Bolyai Mathematica 1986; 31: 70-77.
  • [5] Dziok J, Raina RK, Sokół J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Applied Mathematics and Computation 2011; 2018: 996-1002.
  • [6] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 259, 1983.
  • [7] Grenander U, Szegö G. Toeplitz forms and their applications. California Monographs in Mathematical Sciences University, California Press, Berkeley, 1958.
  • [8] Hamidi SG, Jahangiri JM. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus des Séances de l’Académie des Sciences Série I Mathématique 2016; 354: 365-370.
  • [9] Hayami T, Owa S. Coefficient bounds for bi-univalent functions. Panamerican Mathematical Journal 2012; 22: 15-26.
  • [10] Güney HÖ, Murugusundaramoorthy G, Sokol J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Universitatis Sapientiae Mathematica 2018; 10: 70-84.
  • [11] Lewin M. On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society 1967; 18: 63-68.
  • [12] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Archive for Rational Mechanics and Analysis 1969; 32: 100-112.
  • [13] Pommerenke C. Univalent Functions. Vandenhoeck & Ruprecht, Göttingen, 1975.
  • [14] Srivastava HM, Sümer Eker S, Hamidi SG, Jahangiri JM. Faber polynomial coefficient estimates for Bi-univalent functions defined by the Tremblay fractional derivative operator. Bulletin of the Iranian Mathematical Society 2018; 44: 149-157.
  • [15] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters 2010; 23: 1188-1192.
  • [16] Srivastava HM, Sakar FM, Güney HÖ. Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination. Filomat 2018; 32: 1313–1322.
  • [17] Yılmaz Özgür N, Sokół J. On starlike functions connected with k -Fibonacci numbers. Bulletin of the Malaysian Mathematical Sciences Society 2015; 38 (1): 249-258.