Modified control of the matrix converter-based drive for voltage sag impact reduction

Faults in transmission and distribution networks often cause voltage sags. Direct matrix converter (DMC)-based drives are a new generation of electrical drives. Unlike the conventional two-stage diode supply-side inverter drive, the DMC drive has no direct current (DC) link capacitor and no capacitor charging-time delay before operation. The absence of a DC link makes the DMC-based drive more sensitive to voltage sags. The above-mentioned faults in transmission and distribution networks could degrade the DMC drive's performance and reliability. This paper investigates possible kinds and levels of voltage sags, dependency on network configuration, and the behavior of the DMC-based drive under abnormal input line-voltage conditions. Modification of the DMC drive control to reduce the influence of voltage sags is proposed and verified.