InGaAs nBn SWIR detector design with lattice-matched InAlGaAs barrier

Dark current optimization with band gap engineering has been numerically studied for InGaAs nBn type infrared photodetectors. Undoped InAlGaAs grading layers are utilized in constructing the barrier and dipole delta-doped layers are placed in both sides of the graded layers for eliminating valence band offset. As a result, the high band gap barrier layer blocks the majority carriers and allows minority carrier flow while minimizing various dark current components, as expected from an nBn detector. Substantial improvement has been shown in the dark current level without compromising any photoresponse compared to the conventional pn junction and recently proposed all InGaAs nBn type photodetectors.

___

  • Bommena R, Bergeson JD, Kodama R, Zhao J, Ketharanathan S, Schaake H, Shih H, Velicu S, Aqariden F, Wijewarnasuriya PS et al. High-performance SWIR HgCdTe FPA development on silicon substrates. In: SPIE 2014 Defense + Security; 5–9 May 2014; Baltimore, MD, USA. Bellingham, WA, USA: SPIE. pp. 907009-1–907009-12.
  • Nakajima K, Yamaguchi A, Akita K, Kotani T. Composition dependence of the band gaps of In1-x Gax As1-y Py quaternary solids lattice-matched on InP substrates. J Appl Phys 1978; 49: 5944-5950.
  • Onat BM, Huang W, Masaun N, Lange M, Ettenberg MH, Dries C. Ultra-low dark current InGaAs technology for focal plane arrays for low-light level visible-shortwave infrared imaging. In: SPIE 2007 Defense and Security Symposium; 9–13 April 2007; Orlando, FL, USA. Bellingham, WA, USA: SPIE. pp. 65420L-1–65420L-9.
  • Rutz F, Kleinow P, Aidam R, Bronner W, Kirste L, Walther M. InGaAs infrared detector development for SWIR imaging applications. In: SPIE 2013 Security + Defence; 23–26 September 2013; Dresden, Germany. Bellingham, WA, USA: SPIE. pp. 88960C-1-88960C-7.
  • Stocker HJ, Aspnes DE. Surface chemical reactions on In0.53Ga0.47As. Appl Phys Lett 1983; 42: 85-87.
  • Yeats R, Von Dessonneck K. Polyimide passivation of In0.53Ga0.47As, InP, and InGaAsP/InP p-n junction struc- tures. Appl Phys Lett 1984; 44: 145-147.
  • Ohnaka K, Kubo M, Shibata J. A low dark current InGaAs/InP pin photodiode with covered mesa structure. IEEE T Electron Dev 1987; 34: 199-204.
  • Kim HS, Choi JH, Bang HM, Jee Y, Yun SW, Burm J, Kim MD, Choo AG. Dark current reduction in APD with BCB passivation. Electron Lett 2001; 37: 455-457.
  • Yamabi R, Tsuji Y, Hiratsuka K, Yano H. Fabrication of mesa-type InGaAs pin PDs with InP passivation structure on 4-inch diameter InP substrate. In: IEEE 2004 Indium Phosphide and Related Materials Conference; 31 May–4 June 2004; Kagoshima, Japan. New York, NY, USA: IEEE. pp. 245-248.
  • Kim O, Dutt B, McCoy R, Zuber, J. A low dark-current, planar InGaAs pin photodiode with a quaternary InGaAsP cap layer. IEEE J Quantum Electron 1985; 21: 138-143.
  • Tennant WE, Lee DL, Piquette EC. Fully Depleted Diode Passivation Active Passivation Architecture. Google Patents, 2014.
  • Dolas MH, Kocaman S. Fully depleted InP nano-layer for in-device passivation of InGaAs SWIR detectors. IEEE Electron Device Lett 2017; 38: 1692-1695.
  • Klem JF, Kim JK, Cich MJ, Keeler GA, Hawkins SD, Fortune TR. Mesa-isolated InGaAs photodetectors with low dark current. Appl Phys Lett 2009; 95: 031112.
  • White AM. Infra Red Detectors. Google Patents, 1987.
  • Klipstein P. Depletion-less Photodiode with Suppressed Dark Current and Method for Producing the Same. Google Patents, 2010.
  • Maimon S, Wicks GW. nBn detector, an infrared detector with reduced dark current and higher operating temper- ature. Appl Phys Lett 2006; 89: 151109.
  • Khoshakhlagh A, Rodriguez JB, Plis E, Bishop GD, Sharma YD, Kim HS, Dawson LR, Krishna S. Bias dependent dual band response from In As/ Ga (In) Sb type II strain layer superlattice detectors. Appl Phys Lett 2007; 91: 263504–263506.
  • Klipstein P. “XBn” barrier photodetectors for high sensitivity and high operating temperature infrared sensors. In: SPIE 2008 Defense and Security Symposium; 16–20 March 2008; Orlando, FL, USA. Bellingham, WA, USA: SPIE. pp. 69402U-1–69402U-12.
  • Ting DZY, Hill CJ, Soibel A, Keo SA, Mumolo JM, Nguyen J, Gunapala SD. A high-performance long wavelength superlattice complementary barrier infrared detector. Appl Phys Lett 2009; 95: 023508.
  • Maimon S. Reduced Dark Current Photodetector. Google Patents, 2010.
  • Savich GR, Pedrazzani JR, Sidor DE, Maimon S, Wicks GW. Dark current filtering in unipolar barrier infrared detectors. Appl Phys Lett 2011; 99: 121112.
  • Savich GR, Pedrazzani JR, Sidor DE, Maimon S, Wicks GW. Use of unipolar barriers to block dark currents in infrared detectors. In: SPIE 2011 Defense, Security and Sensing; 25–29 April 2011; Orlando, FL, USA. Bellingham, WA, USA: SPIE. pp. 80122T-1–80122T-10.
  • Schuster J, Keasler CA, Reine M, Bellotti E. Numerical simulation of InAs nBn back-illuminated detectors. J Electron Mater 2012; 41: 2981-2991.
  • Savich GR, Pedrazzani JR, Sidor DE, Wicks GW. Benefits and limitations of unipolar barriers in infrared photode- tectors. Infr Phys Technol 2013; 59: 152-155.
  • Reine M, Schuster J, Pinkie B, Bellotti E. Numerical simulation and analytical modeling of InAs nBn infrared detectors with p-type barriers. J Electron Mater 2013; 42: 3015-3033.
  • Reine M, Pinkie B, Schuster J, Bellotti E. Numerical simulation and analytical modeling of InAs nBn infrared detectors with n-type barrier layers. J Electron Mater 2014; 43: 2915-2934.
  • Martyniuk P, Gawron W, Rogalski A. Theoretical modeling of HOT HgCdTe barrier detectors for the mid-wave infrared range. J Electron Mater 2013; 42: 3309-3319.
  • Martyniuk P, Rogalski A. Theoretical modeling of InAsSb/AlAsSb barrier detectors for higher-operation- temperature conditions. Opt Eng 2014; 53: 017106.
  • Sidor DE, Savich GR, Du X, Wicks GW. Flat-band pn-based unipolar barrier photodetector. Infrared Phys Technol 2015; 70: 111-114.
  • Akhavan ND, Umana-Membreno GA, Jolley G, Antoszewski J, Faraone L. A method of removing the valence band discontinuity in HgCdTe-based nBn detectors. Appl Phys Lett 2014; 105: 121110.
  • Kopytko M, Wróbel J, Jóźwikowski K, Rogalski A, Antoszewski J, Akhavan ND, Umana-Membreno GA, Faraone L, Becker CR. Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors. J Electron Mater 2015; 44: 158-166.
  • Akhavan ND, Umana-Membreno GA, Gu R, Asadnia M, Antoszewski J, Faraone L. Superlattice barrier HgCdTe nBn infrared photodetectors: Validation of the effective mass approximation. IEEE T Electron Dev 2016; 63: 4811-4818.
  • Uzgur F, Karaca U, Kızılkan E, Kocaman S. All InGaAs unipolar barrier infrared detectors. IEEE T Electron Dev 2018; 65: 1397-1403.
  • Uzgur F, Karaca U, Kizilkan E, Kocaman S. Al/Sb free InGaAs unipolar barrier infrared detectors. SPIE 2017 Defense+ Security; 9–13 April 2017; Anaheim, CA, USA. Bellingham, WA, USA: SPIE. pp. 1017706-1–1017706-7.
  • Scott JW, Jones CE, Caine EJ, Cockrum CA. Sub-pixel nBn Detector. Google Patents, 2011.
  • Synopsys Inc. Sentaurus Device User Guide. Version K-2015.06. Mountain View, CA, USA: Synopsys, 2016.
  • Kroemer H. Quasi-electric fields and band offsets: Teaching electrons new tricks (Nobel lecture). ChemPhysChem 2001; 2: 490-499.
  • Capasso F. Compositionally graded semiconductors and their device applications. Ann Rev Mater Sci 1986; 16: 263-291.
  • Olego D, Chang TY, Silberg E, Caridi EA, Pinczuk A. Compositional dependence of band-gap energy and conduction-band effective mass of In1-x-y Gax Aly As lattice matched to InP. Appl Phys Lett 1982; 41: 476- 478.
  • Nguyen C, Liu T, Chen M, Sun HC, Rensch D. AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base-collector design for power applications. IEEE Electron Device Lett 1996; 17: 133-135.
  • Capasso F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 1987; 235: 172-176.
  • Wang XD, Hu WD, Chen XS, Lu W, Tang HJ, Li T, Gong HM. Dark current simulation of InP/InGaAs/InP pin photodiode. In: NUSOD 2008 Numerical Simulation of Optoelectronic Devices; 1–5 September 2008; Nottingham, UK. New York, NY, USA: IEEE. pp.31-32.
  • Rogalski A. Infrared Detectors. Boca Raton, FL, USA: CRC Press, 2010.
  • Yuan H, Meixell M, Zhang J, Bey P, Kimchi J, Kilmer LC. Low dark current small pixel large format InGaAs 2D photodetector array development at Teledyne Judson Technologies. In: SPIE 2012 Defense, Security and Sensing; 23–27 April 2012; Baltimore, MD, USA. Bellingham, WA, USA: SPIE. pp. 835309-1-835309-8.
  • MacDougal M, Geske J, Wang C, Follman D. Low-light-level InGaAs focal plane arrays with and without illumi- nation. In: SPIE 2010 Defense, Security and Sensing; 5–9 April 2010; Orlando, FL, USA. Bellingham, WA, USA: SPIE. pp. 76600K-1-76600K-8.