Fuzzy logic-based disparity selection using multiple data costs for stereo correspondence

  Stereo matching algorithms are capable of generating depth maps from two images of the same scene taken simultaneously from two different viewpoints. Traditionally, a single cost function is used to calculate the disparity between corresponding pixels in the left and right images. In the present research, we have considered a combination of simple data costs. A new method to combine multiple data costs is presented and a fuzzy-based disparity selection method is proposed. Experiments with different combinations of parameters are conducted and compared through the Middlebury and Kitti Stereo Vision Benchmark.

___

  • Heo YS, Lee KM, Lee SU. Robust stereo matching using adaptive normalized cross-correlation. IEEE T Pattern Anal 2011; 33: 807-22.
  • Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vision 2002; 47: 7-42.
  • Szeliski R. Computer Vision: Algorithms and Applications. Berlin, Germany: Springer Science & Business Media, 2010.
  • Hosni A, Bleyer M, Gelautz M, Rhemann C. Local stereo matching using geodesic support weights. In: ICIP; 7 November 2009; Cairo, Egypt. New York, NY, USA: IEEE. pp. 2093-2096.
  • Yoon KJ, Kweon IS. Adaptive support-weight approach for correspondence search. IEEE T Pattern Anal 2006; 28: 650-656.
  • Egnal G. Mutual Information as a Stereo Correspondence Measure. Technical Report. Philadelphia, PA, USA: University of Pennsylvania, 2000.
  • Hirschmüller H, Scharstein D. Evaluation of stereo matching costs on images with radiometric differences. IEEE T Pattern Anal 2008; 29: 1582-1599.
  • Baydoun M, Al-Alaoui MA. Enhancing stereo matching with varying illumination through histogram information and normalized cross correlation. In: IEEE Systems, Signals and Image Processing; 7 July 2013; Bucharest, Romania. New York, NY, USA: IEEE. pp. 5-9.
  • Kim YH, Koo J, Lee S. Adaptive descriptor-based robust stereo matching under radiometric changes. Patt Recogn Lett 2016; 78: 41-47.
  • Jo HW, Moon B. A modified census transform using the representative intensity values. In: IEEE SoC Design Conference; 2 November 2015; Gyungju, South Korea. New York, NY, USA: IEEE. pp. 309-310.
  • Pei SC, Wang YY. Color invariant census transform for stereo matching algorithm. In: IEEE Consumer Electronics; 3 June 2013; Hsinchu, Taiwan. New York, NY, USA: IEEE. pp. 209-210.
  • Yaman M, Kalkan S. Performance evaluation of similarity measures for dense multimodal stereovision. J Electron Imaging 2016; 25: 033013.
  • Pluim JP, Maintz JA, Viergever MA. Image registration by maximization of combined mutual information and gradient information. Lect Notes Comp Sci 2000; 19: 452-461.
  • Hamzah RA, Ibrahim H, Hassan AH. Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation. J Vis Commun Image R 2017; 42: 145-160.
  • Jiao J, Wang R, Wang W, Dong S, Wang Z, Gao W. Local stereo matching with improved matching cost and disparity refinement. IEEE Multimedia 2014; 21: 16-27.
  • Tombari F, Mattoccia S, Di Stefano L, Addimanda E. Near real-time stereo based on effective cost aggregation. In: IEEE International Conference on Pattern Recognition; 8 December 2008; Tampa, FL, USA. New York, NY, USA: IEEE. pp.1-4.
  • Xu Y, Zhao Y, Ji M. Local stereo matching with adaptive shape support window based cost aggregation. Appl Optics 2014; 53: 6885-6892.
  • Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: the KITTI dataset. Int J Robot Res 2013; 32: 1231-1237.
  • Kvålseth TO. On normalized mutual information: measure derivations and properties. Entropy 2017; 19: 631.
  • Russ JC. The Image Processing Handbook. 4th ed. Boca Raton, FL, USA: CRC Press, 2002.
  • Gu F, Zhao H, Zhou X, Li J, Bu P, Zhao Z. Photometric invariant stereo matching method. Opt Express 2015; 23: 31779-31792.
  • Raghavendra U, Krishnamoorth M, Karunakar AK. Illumination invariant data cost using modified census trans- form. In: Proceedings on National Conference on Recent Advances in Information Technology; February 2014; Dhanbad, India. pp. 38-41.
  • Ross TJ. Fuzzy Logic with Engineering Applications. 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, 2004.
  • Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Bart THR, Zimmerman JB, Zuiderveld K. Adaptive histogram equalization and its variations. Comput Vision Graph 1987; 39: 355-368.
  • Serra J. Image Analysis and Mathematical Morphology. New York, NY, USA: Academic Press, 1983.