Experimental and predicted XLPE cable insulation properties under UV Radiation

This paper deals with the behavior of the crosslinked polyethylene XLPE used as high-voltage power cable insulation under ultraviolet UV radiations. For this, XLPE samples have been irradiated for 240 h using low-pressure vapor fluorescent lamps. Electrical surface and volume resistivities , mechanical tensile strength, elongation at break and surface hardness and physical weight loss, water absorption, work of water adhesion and contact angle tests have been first carried out. Experimental results show that the XLPE characteristics are affected by UV radiation. Indeed, a decline in surface resistivity, mechanical properties, and contact angle, and an increase in the water retention amount and weight loss have been recorded. In order to predict and extrapolate some XLPE properties, a supervised artificial neural network ANN trained by Levenberg-Marquardt algorithm has been designed. The collected database is used to train and test the ANN performance. The obtained results show that the proposed ANN algorithm presents good estimation and prediction since the predicted output values agree with the experimental data.

___

  • [1] Frutos F, Acedo M, Mudarra M, Belana J, Ãffrrit J et al. Effect of annealing on conductivity in XLPE mid-voltage cable insulation. Journal of Electrostatics 2007; 65 (2): 122-131. doi: 10.1016/j.elstat.2006.07.015
  • [2] Ying L, Xiaolong C. A novel method for the insulation thickness design of HV XLPE cable based on electrical treeing tests. IEEE Transactions on Dielectrics and Electrical Insulation 2014; 21 (4): 1540-1546. doi: 10.1109/TDEI.2014X.004250
  • [3] Nóbrega AM, Martinez MLB, de Queiroz AAA. Analysis of the XLPE insulation of distribution covered conductors in Brazil. Journal of Material Engineering Performance 2014; 23 (3): 723-735.
  • [4] Fothergill J, Dodd S, Dissado L, Liu T, Nilsson U. The measurement of very low conductivity and dielectric loss in XLPE cables: a possible method to detect degradation due to thermal aging. IEEE Transactions on Dielectrics and Electrical Insulation 2011; 18 (5): 1544-1553.doi: 10.1109/TDEI.2011.6032823
  • [5] Gulmine JV, Akcelrud L. Correlations between structure and accelerated artificial ageing of XLPE. European Polymer Journal 2006; 42(3): 553-562. doi: 10.1016/j.eurpolymj.2005.09.006
  • [6] Bouanga C, Couderc H, Frechette M, Savoie S, Malucelli G et al. Dielectric study of low glass transition temperature cycloaliphatic UV-curable epoxy networks. EEE Transactions on Dielectrics and Electrical Insulation 2012; 19 (4): 1269-1282. doi: 10.1109/TDEI.2012.6260001
  • [7] Santhosh TV, Gopika V, Ghosh AK, Fernandes BG. An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs. Reliability Engineering & System Safety 2018; 170: 31-44. doi: 10.1016/j.ress.2017.10.010
  • [8] Fang S, Du B, Zhu X, Han T. Effect of temperature gradient on electrical tree in XLPE from 0 to 196◦C . IEEE Transactions on Applied Superconductivity 2019; 29 (2): 1-4. doi: 10.1109/TASC.2018.2890468
  • [9] Zhou K, Huang M, Tao W, He M, Yang M. A possible water tree initiation mechanism for service-aged XLPE cables: Conversion of electrical tree to water tree. IEEE Transactions on Dielectrics and Electrical Insulation 2016; 23(3): 1854-1861. doi: 10.1109/TDEI.2016.005405
  • [10] Liu Y, Cao X. Electrical tree growth characteristics in XLPE cable insulation under DC voltage conditions. IEEE Transactions on Dielectrics and Electrical Insulation 2015; 22(6): 3676-3684. doi: 10.1109/TDEI.2015.005222
  • [11] Gu X, He S, Xu Y, Yan Y, Hou S et al. Partial discharge detection on 320 kV VSC-HVDC XLPE cable with artificial defects under DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation 2018; 25(3): 939-946. doi: 10.1109/TDEI.2018.006940
  • [12] Ouyang B, Li H, Zhang X, Wang S, Li J. The role of micro-structure changes on space charge distribution of XLPE during thermo-oxidative ageing. IEEE Transactions on Dielectrics and Electrical Insulation 2017; 24(6): 3849-3859. doi: 10.1109/TDEI.2017.006523
  • [13] Douminge L, Mallarino S, Cohendoz S, Feaugas X, Bernard J. Extrinsic fluorescence as a sensitive method for studying photo-degradation of high density polyethylene part I. Current Applied Physics 2010; 10 (4): 1211-1215. doi: 10.1016/j.cap.2010.02.045
  • [14] Suljovrujic E. Post-irradiation effects in polyethylenes irradiated under various atmospheres. Radiation Physics and Chemistry 2013; 89: 43-50. doi: 10.1016/j.radphyschem.2013.04.003
  • [15] Shimada A, Sugimoto M, Kudoh H, Tamura K, Seguchi T. Degradation distribution in insulation materials of cables by accelerated thermal and radiation ageing. IEEE Transactions on Dielectrics and Electrical Insulation 2013; 20(6): 2107-2116. doi: 10.1109/TDEI.2013.6678859
  • [16] Aljoumaa K, Ajji Z. Mechanical and electrical properties of gamma-irradiated silane crosslinked polyethylene (SiXLPE). Journal of Radioanalytical and Nuclear Chemistry 2016; 307 (2): 1391-1399.
  • [17] Sugimoto M, Shimada A, Kudoh H, Tamura K, Seguchi T. Product analysis for polyethylene degradation by radiation and thermal ageing. Radiation Physics and Chemistry 2013; 82: 69-73. doi: 10.1016/j.radphyschem.2012.08.009
  • [18] Bessissa L, Boukezzi L, Mahi D. Influence of fuzzy parameters on the modeling quality of xlpe insulation properties under thermal aging. Fuzzy Information and Engineering 2016; 8(1): 101-112. doi: 10.1016/j.fiae.2016.03.006
  • [19] Doblies A, Boll B, Fiedler B. Prediction of thermal exposure and mechanical behavior of epoxy resin using artificial neural networks and fourier transform infrared spectroscopy. Polymers (Basel) 2019; 11(2). doi: 10.3390/polym11020363
  • [20] Gopinath S, Sathiyasekar K, Padmanaban S, Chokkalingam B. Insulation condition assessment of high-voltage rotating machines using hybrid techniques. IET Generation, Transmission & Distribution 2019; 13(2): 171-180. doi: 10.1049/iet-gtd.2018.6500
  • [21] Chen K, Huang C, He J. Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. High Voltage 2016; 1 (1): 25-33. doi: 10.1049/hve.2016.0005
  • [22] Roy NK, Potter WD, Landau DP. Polymer property prediction and optimization using neural networks. IEEE Transactions on Neural Network 2006; 17(4): 1001-1014. doi: 10.1109/TNN.2006.875981
  • [23] Boukezzi L, Boubakeur A. Use of neural network algorithms in prediction of XLPE HV insulation properties under thermal aging. In: Zamojski W, Mazurkiewicz J, Sugier J, Walkowiak T, Kacprzyk J (editors). New Results in Dependability and Computer Systems. Heidelberg: Springer, 2013, pp. 53-61.
  • [24] Khan MYA, Koo J-Y. Neural network based diagnosis of partial discharge defects patterns at XLPE cable under DC stress. Electrical Engineering 2017; 99(1): 119-132.
  • [25] Akbal B. Applications of artificial intelligence and hybrid neural network methods with new bonding method to prevent electroshock risk and insulation faults in high-voltage underground cable lines. Neural Computing and Applications 2018; 29(8): 97-105.
  • [26] Mohanty S, Ghosh S. Artificial neural networks modelling of breakdown voltage of solid insulating materials in the presence of void. IET Science, Measurement & Technology 2010; 4(5): 278-288. doi: 10.1049/iet-smt.2010.0005
  • [27] Boukezzi L, Bessissa L, Boubakeur A, Mahi D. Neural networks and fuzzy logic approaches to predict mechanical properties of XLPE insulation cables under thermal aging. Neural Computing and Applications 2017; 28(11): 3557- 3570.
  • [28] Hedir A, Moudoud M. Effect of ultraviolet radiations on medium and high voltage cables insulation properties. International Journal of Engineering and Technology 2016; 8(5): 2308-2317. doi: 10.21817/ijet/2016/v8i5/160805406
  • [29] Hedir A, Jbara O, Moudoud M, Slimani F, Rondot S et al. Behaviour of cross-linked polyethylene used as high voltage power cables insulation due to environmental constraints. In :2018 International Conference on Electrical Sciences and Technologies (CISTEM); Maghreb, Algeria; 2018. pp. 1-4. doi: 10.1109/CISTEM.2018.8613596
  • [30] Andrzejuk W, Barnat-Hunek D, Fic S, StyczeÅff J. Wettability and surface free energy of mineral-asphalt mixtures with dolomite and recycled aggregate. IOP Conference Series: Materials Science and Engineering 2019; 471(3): 032011. doi: 10.1088/1757-899X/471/3/032011
  • [31] Malik ZA, Haleem N, Malik MH, Tanwari A. Predicting the tensile strength of polyester/cotton blended woven fabrics using feed forward back propagation artificial neural networks. Fibers and Polymers 2012; 13(8): 1094-1100.
  • [32] Beale M, Demuth H. Neural network toolbox. Neural Netw. Toolbox, Userâffffs Guide, 2004.
  • [33] Bok-Hee Y, Chang-Su H. Surface degradation of HTV silicone rubber and EPDM used for outdoor insulators under accelerated ultraviolet weathering condition. IEEE Transactions on Dielectrics and Electrical Insulation 2005; 12 (5): 1015-1024. doi: 10.1109/TDEI.2005.1522194
  • [34] Hedir A, Moudoud M, Rondot S, Jbara O, Slimani F. UV-Aging Effect on the Behaviour of Cross-linked Polyethylene Used as High Voltage Power Cables Insulation. In : Société Française d’électrostatique; France; 2018. pp. 7-11.
  • [35] Kaczmarek H, O ffdak D, Malanowski P, Chaberska H. Effect of short wavelength UV-irradiation on ageing of polypropylene/cellulose compositions. Polymer Degradation and Stability 2005; 88(2): 189-198.doi: 10.1016/j.polymdegradstab.2004.04.017
  • [36] Eve S, Mohr J. Effects of UV-irradiation on the thermo-mechanical properties of optical grade poly(methyl methacrylate). Applied Surface Science 2010; 256(9): 2927-2933. doi: 10.1016/j.apsusc.2009.11.052
  • [37] Jofre-Reche JA , Martà n-Martà nez JM. Selective surface modification of ethylene-vinyl acetate and ethylene polymer blend by UVâffffozone treatment. International Journal of Adhesion and Adhesives 2013; 43: 42-53. doi: 10.1016/j.ijadhadh.2013.01.010
  • [38] OâffffConnell C, Sherlock R, Ball MD, Aszalós-Kiss B, Prendergast U et al. Investigation of the hydrophobic recovery of various polymeric biomaterials after 172 nm UV treatment using contact angle, surface free energy and XPS measurements. Applied Surface Science 2009; 255(8): 4405-4413. doi: 10.1016/j.apsusc.2008.11.034
  • [39] Rosu D, Rosu L, Mustata F, Varganici C-D. Effect of UV radiation on some semi-interpenetrating polymer networks based on polyurethane and epoxy resin. Polymer Degradation and Stability 2012; 97(8): 1261-1269. doi: 10.1016/j.polymdegradstab.2012.05.035
  • [40] Liu H, Cash G, Birtwhistle D, George G. Characterization of a severely degraded silicone elastomer HV insulator - an aid to development of lifetime assessment techniques. IEEE Transactions on Dielectrics and Electrical Insulation 2005; 12(3): 478-486. doi: 10.1109/TDEI.2005.1453452