Design and fabrication of an eight-port binary Wilkinson power splitter

An eight-port X-band power splitter based on binary Wilkinson power splitter topology is presented in this paper. The proposed power splitter consists of three stages, with one, two, and four equal power splitters in the first, second, and third stages, respectively. The input power is divided equally between the eight outputs to provide an equal-split power splitter. Evaluation of the structure is carried out using even- and odd-mode techniques. An epoxy laminate FR4 substrate with thickness of 0.5 mm is chosen, while the designed power splitter is simulated using Keysight Advanced Design System 2019 and ANSYS High Frequency Structure Simulation. As the results indicate, excellent performance is obtained for the power splitter, with a reflection coefficient of –36.5 dB and an insertion loss of –9.32 dB at the 9.65 GHz center frequency. The proposed power splitter has the potential to be employed in radar and microwave systems, specifically in phased-array structures.

___

  • [1] Pozar DM. Microwave Engineering. Hoboken, NJ, USA: Wiley, 1990.
  • [2] Cohn SB. A class of broadband three-port TEM-mode hybrids. IEEE Transactions on Microwave Theory and Techniques 1968; 2 (16): 110-116. doi: 10.1109/TMTT.1968.1126617
  • [3] Goldfarb ME. A recombinant, in-phase power divider. IEEE Transactions on Microwave Theory and Techniques 1991; 8 (39): 1438-1440. doi: 10.1109/22.85423
  • [4] Wilkinson EJ. An n-way hybrid power divider. IRE Transactions on Microwave Theory and Techniques 1960; 1 (8): 116-118. doi: 10.1109/TMTT.1960.1124668
  • [5] Harty DD. Novel design of a wideband ribcage-dipole array and its feeding network. MSc, Worcester Polytechnic Institute, Worcester, MA, USA, 2011.
  • [6] Kiris O, Akan V, Gokten M, Kuzu L. Implementation of three-way power divider based on substrate integrated waveguide. In: USNC-URSI Radio Science Meeting (Joint with AP-S Symposium); San Diego, CA, USA; 2017. pp. 111-112. doi: 10.1109/USNC-URSI.2017.8074922
  • [7] Kiris O, Akan V, Gokten M, Kuzu L. Three-way substrate integrated waveguide (SIW) power divider design. In: IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES); Honolulu, HI, USA; 2016. pp. 1-2. doi: 10.1109/ROPACES.2016.7465421
  • [8] Deslandes D, Wu K. Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave and Wireless Components Letters 2001; 2 (11): 68-70. doi: 10.1109/7260.914305
  • [9] Deslandes D. Design equations for tapered microstrip-to-substrate integrated waveguide transitions. In: IEEE MTTS International Microwave Symposium; Anaheim, CA, USA; 2010. pp. 704-707. doi: 10.1109/MWSYM.2010.5517884
  • [10] Abdalla MA, Hu Z. Compact and broadband left handed CPW power divider/combiner for C/X bands. In: National Radio Science Conference (NRSC); Cairo, Egypt; 2012. pp. 29-36. doi: 10.1109/NRSC.2012.6208503
  • [11] Veselago VG. The electrodynamics of substances with simultaneously negative values of E and M. Soviet Physics Uspekhi 1968; 2 (10): 509-514.
  • [12] Smith WJPDR, Vier DC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters 2000; 1 (84): 4184-4187.
  • [13] Falcone F, Lopetegi T, Baena JD, Marques R, Martin F et al. Effective negative-/spl epsiv/stopband microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters 2004; 6 (14): 280-282
  • [14] Eleftheriades GV, Iyer AK, Kremer PC. Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Transactions on Microwave Theory and Techniques 2002; 12 (50): 2702-2712. doi: 10.1109/TMTT.2002.805197
  • [15] Caloz C, Itoh T. Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line. IEEE Transactions on Antennas and Propagation 2004; 5 (52): 1159-1166. doi: 10.1109/TAP.2004.827249
  • [16] Kazemi R, Sadeghzadeh RA, Fathy A. A new compact wide band 8-way SIW power divider at X-band. In: Loughborough Antennas & Propagation Conference; Loughborough, UK; 2011. pp. 1-4. doi: 10.1109/LAPC.2011.6114098
  • [17] Songnan Y, Elsherbini A, Lin S, Fathy AE, Kamel A et al. A highly efficient Vivaldi antenna array design on thick substrate and fed by SIW structure with integrated GCPW feed. In: IEEE Antennas and Propagation Society International Symposium; Honolulu, HI, USA; 2007. pp. 1985-1988. doi: 10.1109/APS.2007.4395912
  • [18] Deslandes WD. Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides. IEEE Transactions on Microwave Theory and Techniques 2005; 8 (53): 2487-2494. doi: 10.1109/TMTT.2005.852778
  • [19] Jang E, Jeong J, Han S, Son K, Yun Y. Miniaturized on-chip power divider/combiner circuit on MMIC for application to C/X band maritime communication system. In: International Conference on ICT Convergence (ICTC); Jeju Island, South Korea; 2012. pp. 191-192. doi: 10.1109/ICTC.2012.6386814
  • [20] Murae T, Fujii K, Matsuno T. A compact S-band MMIC high power amplifier module. In: IEEE MTT-S International Microwave Symposium Digest; Boston, MA, USA; 2000. pp. 943-946. doi: 10.1109/MWSYM.2000.863512
  • [21] Kazuhiro K, Akihiro S, Yasuaki A, Yasushi K, Keiichi M et al. An X-band 250W solid-state power amplifier using GaN power HEMTs. In: IEEE Radio and Wireless Symposium; Orlando, FL, USA; 2008. pp. 77-80. doi: 10.1109/RWS.2008.4463432
  • [22] Yun Y. An ultra-compact Wilkinson power divider MMIC with an improved isolation characteristic employing RCR design method. Journal of the Korean Society of Marine Engineering 2013; 1 (37): 105-113. doi: 10.5916/jkosme.2013.37.1.105
  • [23] Chang K. RF and Microwave Transmitter Design. Hoboken, NJ, USA: Wiley, 2005.
  • [24] Grebennikov A. RF and Microwave Transmitter Design. Hoboken, NJ, USA: Wiley, 2011.