Contribution of artificial proprioception on a dynamic finger flexion task

There has been a considerable effort to provide sensory feedback for myoelectric prostheses. Among the solutions provided in the literature, sensory substitution is an easy and cost-effective way to provide feedback through different sensory modalities at different locations on the body. In this study, we evaluate the effect of sensory substitution of force and position feedback on a two-degree-of-freedom dynamic finger flexion task. For this purpose, a new methodology and an experimental setup are developed. The experimental methodology is based on the "strength-dexterity test", working on the principle of buckling of compression springs. The experimental setup comprises a haptic interface, an input device, a force sensor, two vibration feedback tactors, and a virtual environment. A psychophysical test is conducted where subjects interact with a virtual spring with the index finger of their dominant hand through the haptic interface, the input device, or the force sensor in either isotonic or isometric mode. Three feedback conditions are tested: no sensory substitution, modality-matched sensory substitution, and modality-mismatched sensory substitution (through vibration). Sensory substitution feedback is provided on the subject's contralateral arm. Results show that sensory substitution of force and position does not have a significant contribution to subjects' performance in the proposed dynamic task.

___

  • Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devic 2013; 10: 45-54.
  • Dudkiewicz I, Gabrielov R, Seiv-Ner I, Zelig G, Heim M. Evaluation of prosthetic usage in upper limb amputees. Disabil Rehabil 2004; 26: 60-63.
  • Østlie K, Lesjø IM, Franklin RJ, Garfelt B, Skjeldal OH, Magnus P. Prosthesis rejection in acquired major upper- limb amputees: a population-based survey. Disabil Rehabil 2012; 7: 294-303.
  • Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med 2014; 6: 257ra138.
  • Charkhkar H, Shell CE, Marasco PD, Pinault GJ, Tyler DJ, Triolo RJ. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J Neural Eng 2018; 15: 056002.
  • Kuiken TA, Marasco PD, Lock BA, Harden RN, Dewald JPA. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. P Natl Acad Sci USA 2007; 104: 20061-20066.
  • Hebert JS, Olson JL, Morhart MJ, Dawson MR, Marasco PD, Kuiken TA, Chan KM. Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE T Neur Sys Reh 2014; 22: 765-773.
  • Marasco PD, Hebert JS, Sensinger JW, Shell CE, Schofield JS, Thumser ZC, Nataraj R, Beckler DT, Dawson MR, Blustein DH et al. Illusory movement perception improves motor control for prosthetic hands. Sci Transl Med 2018; 10: eaao6990.
  • Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 1995; 73: 820-835.
  • Wolpert DM, Miall R, Kawato M. Internal models in the cerebellum. Trends Cogn Sci 1998; 2: 338-347.
  • Sarlegna FR, Gauthier GM, Bourdin C, Vercher JL, Blouin J. Internally driven control of reaching movements: a study on a proprioceptively deafferented subject. Brain Res Bull 2006; 69: 404-415.
  • Mann RW, Reimers SD. Kinesthetic sensing for the EMG controlled “Boston arm”. IEEE T Man Machine 1970; 11: 110-115.
  • Nohama P, Vizzotto Lopes A, Cliquet A Jr. Electrotactile stimulator for artificial proprioception. Artif Organs 1995; 19: 225-230.
  • Wheeler J, Bark K, Savall J, Cutkosky M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE T Neur Sys Reh 2010; 18: 58-66.
  • Arieta AH, Afthinos M, Dermitzakis K. Apparent moving sensation recognition in prosthetic applications. Procedia Comput Sci 2011; 7: 133-135.
  • Witteveen HJB, Droog Ea, Rietman JS, Veltink PH. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE T Biomed Eng 2012; 59: 2219-2226.
  • Chinello F, Pacchierotti C, Tsagarakis NG, Prattichizzo D. Design of a wearable skin stretch cutaneous device for the upper limb. In: 2016 IEEE Haptics Symposium (HAPTICS); 8–11 April 2016; Philadelphia, PA, USA. New York, NY, USA: IEEE. pp. 14-20.
  • Battaglia E, Clark JP, Bianchi M, Catalano MG, Bicchi A, O’Malley MK. The Rice Haptic Rocker: skin stretch haptic feedback with the Pisa/IIT SoftHand. In: 2017 IEEE World Haptics Conference (WHC); 6–9 June 2017; Munich, Germany. New York, NY, USA: IEEE. pp. 7-12.
  • Patterson PE, Katz JA. Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J Rehabil Res Dev 1992; 29: 1-8.
  • Blank A, Okamura AM, Kuchenbecker KJ. Identifying the role of proprioception in upper-limb prosthesis control. ACM T Appl Percept 2010; 7: 1-23.
  • Simpson DC. The choice of control system for the multimovement prosthesis: extended physiological proprioception (e.p.p.). In: Herberts P, Kadefors R, Magnusson R, Petersen I, editors. Control of Upper-Extremity Prostheses and Orthoses. Springfield, IL, USA: Thomas, 1974. pp. 146-150.
  • Brown JD, Kunz TS, Gardner D, Shelley MK, Davis AJ, Gillespie RB. An empirical evaluation of force feedback in body-powered prostheses. IEEE T Neur Sys Reh 2017; 25: 215-226.
  • Chatterjee A, Chaubey P, Martin J, Thakor N. Testing a prosthetic haptic feedback simulator with an interactive force matching task. J Prosthet Orthot 2008; 20: 27-34.
  • Bark K, Wheeler JW, Premakumar S, Cutkosky MR. Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information. In: 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems; 13–14 March 2008; Reno, NV, USA. New York, NY, USA: IEEE. pp. 71-78.
  • Stepp CE, Matsuoka Y. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation. IEEE T Neur Sys Reh 2012; 20: 31-37.
  • Gurari N, Kuchenbecker KJ, Okamura AM. Perception of springs with visual and proprioceptive motion cues: Implications for prosthetics. IEEE T Hum-Mach Syst 2013; 43: 102-114.
  • Pistohl T, Joshi D, Ganesh G, Jackson A, Nazarpour K. Artificial proprioceptive feedback for myoelectric control. IEEE T Neur Sys Reh 2015; 23: 498-507.
  • Brown JD, Shelley MK, Gardner D, Gansallo EA, Gillespie RB. Non-colocated kinesthetic display limits compliance discrimination in the absence of terminal force cues. IEEE T Haptics 2016; 9: 387-396.
  • Corbett EA, Perreault EJ, Kuiken TA. Comparison of electromyography and force as interfaces for prosthetic control. J Rehabil Res Dev 2011; 48: 629-641.
  • Zhai S, Milgram P. Human performance evaluation of manipulation schemes in virtual environments. In: IEEE Virtual Reality Annual International Symposium; 18–22 September 1993; Seattle, WA, USA. New York, NY, USA: IEEE. pp. 155-161.
  • Valero-Cuevas FJ, Smaby N, Venkadesan M, Peterson M, Wright T. The strength-dexterity test as a measure of dynamic pinch performance. J Biomech 2003; 36: 265-270.
  • Valero-Cuevas FJ. An integrative approach to the biomechanical function and neuromuscular control of the fingers. J Biomech 2005; 38: 673-684.
  • Venkadesan M, Guckenheimer J, Valero-Cuevas FJ. Manipulating the edge of instability. J Biomech 2007; 40: 1653-1661.
  • Cipriani C, Dalonzo M, Carrozza MC. A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE T Bio-med Eng 2012; 59: 400-408.
  • Shigley JE, Mischke CR, Budynas RG. Mechanical Engineering Design. New York, NY, USA: McGraw-Hill, 2002.
  • Timoshenko SP, Gere JM. Theory of Elastic Stability. 2nd ed. New York, NY, USA: McGraw-Hill, 1961.