An arbitrary waveform magnetic nanoparticle relaxometer with an asymmetrical three-section gradiometric receive coil

Magnetic nanoparticles MNPs have a wide range of clinical applications for imaging, therapy, and biosensing. Superparamagnetic MNPs can be directly visualized with high spatiotemporal resolution using the magnetic particle imaging MPI modality. The image resolution of MPI depends on the relaxation properties of the MNPs. Therefore, characterization of MNP response under alternating magnetic field excitation is necessary to predict MPI imaging performance and develop optimized MNPs. Biosensing applications also make use of the change in the relaxation response of MNPs after binding to a target agent. As MNP relaxation properties change with temperature and viscosity, noninvasive probing of these microenvironmental properties is possible. In this work, we present an untuned relaxometer to measure the relaxation properties of the MNPs in a wide frequency and amplitude range. The developed relaxometer can produce above 80 mTpp magnetic field at up to 60 kHz frequency, and above 14 mTpp at up to 150 kHz frequency. An asymmetrical three-section gradiometer receive coil is used to cancel the direct coupled signal from the transmit coil. The position of one of the receive coil sections is manually tuned using a rotating knob for improved decoupling. The tuning coil section has a lower number of turns compared to the other sections to decrease the sensitivity to mechanical movement. By tuning the knob, the transmit-receive coupling can be decreased below ?80 dB. We analyzed the x-space image resolution, harmonic levels, and effect of the number of used harmonics on the resolution for two different commercially available superparamagnetic iron oxide MNPs Perimag and Synomag-D in a multifrequency/multiamplitude measurement scheme. The magnetization properties of MNPs for arbitrary waveforms can be measured efficiently using the developed relaxometer.

___

  • [1] Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C et al. Magnetic particle imaging: current developments and future directions. International Journal of Nanomedicine 2015; 10: 3097–3114. doi: 10.2147/IJN.S70488
  • [2] Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Materials Today 2011; 14(7–8): 330–338. doi: 10.1016/S1369-7021(11)70163-8
  • [3] Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I et al. Magnetic nanoparticle hyperthermia in cancer treatment. Nano LIFE 2010; 1: 01n02. doi:10.1142/S1793984410000067 .
  • [4] Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials 2013; 12 (11): 991–1003. doi: 10.1038/nmat3776
  • [5] Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435 (7046): 1214–1217. doi: 10.1038/nature03808
  • [6] Knopp T, Buzug TM. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Heidelberg, Germany: Springer-Verlag, 2012.
  • [7] Borgert J, Schmidt JD, Schmale I, Rahmer J, Bontus C et al. Fundamentals and applications of magnetic particle imaging. Journal of Cardiovascular Computed Tomography 2012; 6 (3): 149–153. doi: 10.1016/j.jcct.2012.04.007
  • [8] Knopp T, Gdaniek N, Möddel M. Magnetic particle imaging: from proof of principle to preclinical applications. Physics in Medicine and Biology 2017; 62 (14): R124. doi: 10.1088/1361-6560/aa6c99
  • [9] Weaver JB. The use of magnetic nanoparticles in thermal therapy monitoring and screening: localization and imaging (invited). Journal of Applied Physics 2012: 111 (7): 07B317. doi: 10.1063/1.3675994
  • [10] Weaver JB, Rauwerdink AM, Hansen EW. Magnetic nanoparticle temperature estimation. Medical Physics 2009; 36 (5): 1822–1829. doi: 10.1118/1.3106342
  • [11] Rauwerdink AM, Weaver JB. Viscous effects on nanoparticle magnetization harmonics. Journal of Magnetism and Magnetic Materials 2010; 322 (6): 609–613. doi: 10.1016/j.jmmm.2009.10.024
  • [12] Utkur M, Muslu Y, Saritas EU. Relaxation-based viscosity mapping for magnetic particle imaging. Physics in Medicine and Biology 2017; 62 (9): 3422–3439. doi: 10.1088/1361-6560/62/9/3422
  • [13] Rauwerdink AM, Weaver JB. Measurement of molecular binding using the Brownian motion of magnetic nanoparticle probes. Applied Physics Letters 2010; 96 (3): 033702. doi: 10.1063/1.3291063
  • [14] Néel L. Thermoremanent magnetization of fine powders. Reviews of Modern Physics 1953; 25 (1): 293–295. doi: 10.1103/RevModPhys.25.293
  • [15] Brown WF. Thermal fluctuations of a single-domain particle. Journal of Applied Physics 1963; 34 (4): 1319–1320. doi: 10.1063/1.1729489
  • [16] Coffey WT, Cregg PJ, Kalmykov YUP. On the theory of Debye and Néel relaxation of single domain ferromagnetic particles. Advances in Chemical Physics 2007; 1: 263–464. doi: 10.1002/9780470141410.ch5
  • [17] Malhotra A, von Gladiss A, Behrends A, Friedrich T, Neumann A et al. Tracking the growth of superparamagnetic nanoparticles with an in-situ magnetic particle spectrometer (INSPECT). Scientific Reports 2019; 9 (1): 1–13. doi: 10.1038/s41598-019-46882-6
  • [18] Biederer S, Sattel T, Knopp T, Lüdtke-Buzug K, Gleich B et al. A spectrometer for magnetic particle imaging. In: Vander Sloten J, Verdonck P, Nyssen M, Haueisen J (editors). 4th European Conference of the International Federation for Medical and Biological Engineering. Berlin, Germany: Springer, 2009, pp. 2313–2316.
  • [19] Wawrzik T, Schilling M, Ludwig F. Perspectives of magnetic particle spectroscopy for magnetic nanoparticle characterization. In: Buzug TM, Borgert J (editors). Magnetic Particle Imaging. Berlin, Germany: Springer, 2012, pp. 41–45.
  • [20] Goodwill PW, Tamrazian A, Croft LR, Lu CD, Johnson EM et al. Ferrohydrodynamic relaxometry for magnetic particle imaging. Applied Physics Letters 2011; 98 (26): 262502. doi: 10.1063/1.3604009
  • [21] Utkur M, Saritas EU. Comparison of different coil topologies for an MPI relaxometer. In: IWMPI 2015 International Workshop on Magnetic Particle Imaging; Istanbul, Turkey; 2015. pp. 1-13. doi: 10.1109/IWMPI.2015.7107082
  • [22] Behrends A, Graeser M, Buzug TM. Introducing a frequency-tunable magnetic particle spectrometer. Current Directions in Biomedical Engineering 2015; 1 (1): 249–253. doi: 10.1515/cdbme-2015-0062
  • [23] Tay ZW, Goodwill PW, Hensley DW, Taylor LA, Zheng B et al. A high-throughput, arbitrary-waveform, MPI spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization. Scientific Reports 2016; 6: 1-11. doi: 10.1038/srep34180
  • [24] Graeser M, Gladiss AV, Weber M, Buzug TM. Two dimensional magnetic particle spectrometry. Physics in Medicine and Biology 2017; 62 (9): 3378–3391. doi: 10.1088/1361-6560/aa5bcd
  • [25] Chen X, Graeser M, Behrends A, von Gladiss A, Buzug TM. First measurement and SNR results of a 3D magnetic particle spectrometer. International Journal on Magnetic Particle Imaging 2018; 4 (1): 1-20.
  • [26] Eberbeck D, Dennis CL, Huls NF, Krycka KL, Grüttner C et al. Multicore magnetic nanoparticles for magnetic particle imaging. IEEE Transactions on Magnetics 2013; 49 (1): 269-274. doi: 10.1109/TMAG.2012.2226438
  • [27] Grüttner C, Kowalski A, Fidler F, Steinke M, Westphal F et al. Synomag nanoflower particles: a new tracer for MPI, physical characterization and initial in vitro toxicity studies. In: IWMPI 2018 International Workshop on Magnetic Particle Imaging; Hamburg, Germany; 2018. pp. 17-8.
  • [28] Saritas EU, Goodwill PW, Zhang GZ, Conolly SM. Magnetostimulation limits in magnetic particle imaging. IEEE Transactions on Medical Imaging 2013; 32 (9): 1600–1610. doi: 10.1109/TMI.2013.2260764
  • [29] Croft LR, Goodwill PW, Konkle JJ, Arami H, Price DA et al. Low drive field amplitude for improved image resolution in magnetic particle imaging. Medical Physics 2016; 43 (1): 424–435. doi: 10.1118/1.4938097
  • [30] Croft LR, Goodwill PW, Conolly SM. Relaxation in x-space magnetic particle imaging. IEEE Transactions on Medical Imaging 2012; 31 (12): 2335–2342. doi: 10.1109/TMI.2012.2217979
  • [31] Goodwill PW, Conolly SM. The x-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Transactions on Medical Imaging 2010; 29 (11): 1851–1859. doi: 10.1109/TMI.2010.2052284
  • [32] Lu K, Goodwill PW, Saritas EU, Zheng B, Conolly SM. Linearity and shift invariance for quantitative magnetic particle imaging. IEEE Transactions on Medical Imaging 2013; 32 (9): 1565–1575. doi: 10.1109/TMI.2013.2257177
  • [33] Kuhlmann C, Khandhar AP, Ferguson RM, Kemp S, Wawrzik T et al. Drive-field frequency dependent MPI performance of single-core magnetite nanoparticle tracers. IEEE Transactions on Magnetics 2015; 51: 3–6.
  • [34] Schulz V, Straub M, Mahlke M, Hubertus S, Lammers T et al. A field cancellation signal extraction method for magnetic particle imaging. IEEE Transactions on Magnetics 2015; 51: 1-12.
  • [35] Pantke D, Holle N, Mogarkar A, Straub M, Schulz V. Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach. Medical Physics 2019; 46 (9): 4077- 4086.